Permeable Pavements


Book Description

Sponsored by the Low Impact Development Committee of the Urban Water Resources Research Council of the Environmental and Water Resources Institute of ASCE Permeable Pavements is a comprehensive resource for the proper design, construction, and maintenance of permeable pavement systems that provide a transportation surface and a best management practice for stormwater and urban runoff. A cornerstone for low impact development (LID) and sustainable site design, permeable pavements are considered a green infrastructure practice. They offer many environmental benefits, from reduced stormwater runoff and improved water quality to better site design and enhanced safety of paved surfaces. Commonly used for walkways, driveways, patios, and low-volume roadways as well as recreational areas, parking lots, and plazas, permeable pavements are appropriate for many different land uses, particularly in highly urbanized locations. This volume synthesizes today's knowledge of the technology, drawing from academia, industry, and the engineering and science communities. It presents an overview of typical permeable pavement systems and reviews the design considerations. Detailed design, construction, use, and performance information is provided for porous asphalt, pervious concrete, permeable interlocking concrete pavement, and grid pavements. Fact sheets and checklists help to successfully incorporate permeable pavement systems into design projects. Additional chapters summarize emerging technologies, maintenance considerations, hydrologic design approaches, key components for specification writing, and key areas for additional research. Appendixes include a fact sheet clarifying information on common concerns, as well as data tables summarizing water quality treatment performance and costs. Permeable Pavements is an essential reference for engineers, planners, landscape architects, municipalities, transportation agencies, regulatory agencies, and property owners planning to implement this best management practice for stormwater and urban runoff.




Porous Pavements


Book Description

Pavements are the most ubiquitous of all man-made structures, and they have an enormous impact on environmental quality. They are responsible for hydrocarbon pollutants, excess runoff, groundwater decline and the resulting local water shortages, temperature increases in the urban "heat island," and for the ability of trees to extend their roots in




An Introduction to Permeable Concrete Pavement for Professional Engineers


Book Description

Introductory technical guidance for civil engineers and other professional engineers and construction managers interested in permeable concrete pavements. Here is what is discussed: 1. BACKGROUND, 2. DESIGN, 3. CONSTRUCTION, 4. MAINTENANCE, 5. PERFORMANCE, 6. REFERENCES.




Pervious Concrete Pavements


Book Description







Report on Pervious Concrete


Book Description

"This report provides technical information on pervious concrete's application, design methods, materials, properties, mixture proportioning, construction methods, testing, and inspection. The term 'pervious concrete' typically describes a near-zero-slump, open-graded material consisting of portland cement, coarse aggregate, little or no fine aggregate, admixtures, and water." [p. 1]




Stormwater Management


Book Description

Designed for both students and practicing professionals, it addresses critical issues of water quality, focusing on the illustration and application of both hydrologic and economic water management techniques. Stresses applications using worked examples, case studies and problems. Software is to assist in solving more complex problems and to apply demonstrated techniques. The software discussed in the book is available for download at http://www.cee.ucf.edu/software/swm1993.zip




Road and Airfield Pavement Technology


Book Description

This volume gathers the latest advances, innovations, and applications in the field of pavement technology, presented at the 12th International Conference in Road and Airfield Pavement Technology (ICPT), hosted by the University of Moratuwa, Sri Lanka, and held on July 14-16, 2021. It covers topics such as pavement design, evaluation and construction, pavement materials characterization, sustainability in pavement engineering, pavement maintenance and rehabilitation techniques, pavement management systems and financing, transportation safety, law and enforcement related to pavement engineering, pavement drainage and erosion control, GIS applications, quarry material assessment, pavement instrumentation, IT and AI applications in pavement. Featuring peer-reviewed contributions by leading international researchers and engineers, the book is a timely and highly relevant resource for materials scientists and engineers interested in pavement engineering.




AASHTO Guide for Design of Pavement Structures, 1993


Book Description

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.




Handbook of Alkali-Activated Cements, Mortars and Concretes


Book Description

This book provides an updated state-of-the-art review on new developments in alkali-activation. The main binder of concrete, Portland cement, represents almost 80% of the total CO2 emissions of concrete which are about 6 to 7% of the Planet's total CO2 emissions. This is particularly serious in the current context of climate change and it could get even worse because the demand for Portland cement is expected to increase by almost 200% by 2050 from 2010 levels, reaching 6000 million tons/year. Alkali-activated binders represent an alternative to Portland cement having higher durability and a lower CO2 footprint. - Reviews the chemistry, mix design, manufacture and properties of alkali-activated cement-based concrete binders - Considers performance in adverse environmental conditions. - Offers equal emphasis on the science behind the technology and its use in civil engineering.