Quantum Monte Carlo Methods


Book Description

Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.




Quantum Monte Carlo Methods


Book Description

The first textbook to provide a pedagogical examination of the major algorithms used in quantum Monte Carlo simulations.




An Introduction to Quantum Monte Carlo Methods


Book Description

Monte Carlo methods have been very prominent in computer simulation of various systems in physics, chemistry, biology, and materials science. This book focuses on the discussion and path-integral quantum Monte Carlo methods in many-body physics and provides a concise but complete introduction to the Metropolis algorithm and its applications in these two techniques. To explore the schemes in clarity, several quantum many-body systems are analysed and studied in detail. The book includes exercises to help digest the materials covered. It can be used as a tutorial to learn the discussion and path-integral Monte Carlo or a recipe for developing new research in the reader's own area. Two complete Java programs, one for the discussion Monte Carlo of 4^He clusters on a graphite surface and the other for the path-integral Monte Carlo of cold atoms in a potential trap, are ready for download and adoption.




Quantum Monte Carlo Approaches for Correlated Systems


Book Description

Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference for students and researchers working in condensed matter theory or those interested in advanced numerical methods for electronic simulation.




Monte Carlo Simulation in Statistical Physics


Book Description

When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a "realiife" problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the "formal material" was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects.




Monte Carlo Methods


Book Description

This introduction to Monte Carlo Methods seeks to identify and study the unifying elements that underlie their effective application. It focuses on two basic themes. The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modelling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on that example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrodinger equation by random walks. The detailed discussion of variance reduction includes Monte Carlo evaluation of finite-dimensional integrals. Special attention is given to importance sampling, partly because of its intrinsic interest in quadrature, partly because of its general usefulness in the solution of integral equations. One significant feature is that Monte Carlo Methods treats the "Metropolis algorithm" in the context of sampling methods, clearly distinguishing it from importance sampling. Physicists, chemists, statisticians, mathematicians, and computer scientists will find Monte Carlo Methods a complete and stimulating introduction.




Exploring Monte Carlo Methods


Book Description

Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. - Provides a comprehensive yet concise treatment of Monte Carlo methods - Uses the famous "Buffon's needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods - Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions




Markov Chain Monte Carlo Methods in Quantum Field Theories


Book Description

This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics. The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.




Monte Carlo Methods In Ab Initio Quantum Chemistry


Book Description

This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are:




A Guide to Monte Carlo Simulations in Statistical Physics


Book Description

This updated edition deals with the Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. It contains many applications, examples, and exercises to help the reader. It is an excellent guide for graduate students and researchers who use computer simulations in their research.