An Introduction to Semi-tensor Product of Matrices and Its Applications


Book Description

A generalization of Conventional Matrix Product (CMP), called the Semi-Tensor Product (STP), is proposed. It extends the CMP to two arbitrary matrices and maintains all fundamental properties of CMP. In addition, it has a pseudo-commutative property, which makes it more superior to CMP. The STP was proposed by the authors to deal with higher-dimensional data as well as multilinear mappings. After over a decade of development, STP has been proven to be a powerful tool in dealing with nonlinear and logical calculations.This book is a comprehensive introduction to the theory of STP and its various applications, including logical function, fuzzy control, Boolean networks, analysis and control of nonlinear systems, amongst others.




An Introduction to Semi-tensor Product of Matrices and Its Applications


Book Description

Proposes a generalization of Conventional Matrix Product (CMP), called the Semi-Tensor Product (STP). This book offers a comprehensive introduction to the theory of STP and its various applications, including logical function, fuzzy control, Boolean networks, analysis and control of nonlinear systems, amongst others.




An Introduction To Semi-tensor Product Of Matrices And Its Applications


Book Description

A generalization of Conventional Matrix Product (CMP), called the Semi-Tensor Product (STP), is proposed. It extends the CMP to two arbitrary matrices and maintains all fundamental properties of CMP. In addition, it has a pseudo-commutative property, which makes it more superior to CMP. The STP was proposed by the authors to deal with higher-dimensional data as well as multilinear mappings. After over a decade of development, STP has been proven to be a powerful tool in dealing with nonlinear and logical calculations.This book is a comprehensive introduction to the theory of STP and its various applications, including logical function, fuzzy control, Boolean networks, analysis and control of nonlinear systems, amongst others.




Tensors: Geometry and Applications


Book Description

Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.







Introduction to Tensor Products of Banach Spaces


Book Description

This is the first ever truly introductory text to the theory of tensor products of Banach spaces. Coverage includes a full treatment of the Grothendieck theory of tensor norms, approximation property and the Radon-Nikodym Property, Bochner and Pettis integrals. Each chapter contains worked examples and a set of exercises, and two appendices offer material on summability in Banach spaces and properties of spaces of measures.




Matrix Calculus, Kronecker Product And Tensor Product: A Practical Approach To Linear Algebra, Multilinear Algebra And Tensor Calculus With Software Implementations (Third Edition)


Book Description

Our self-contained volume provides an accessible introduction to linear and multilinear algebra as well as tensor calculus. Besides the standard techniques for linear algebra, multilinear algebra and tensor calculus, many advanced topics are included where emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, Hopf algebra, Yang-Baxter relations, computer graphics, fractals, quantum mechanics, quantum computing, entanglement, teleportation and partial trace. All these fields are covered comprehensively.The volume contains many detailed worked-out examples. Each chapter includes useful exercises and supplementary problems. In the last chapter, software implementations are provided for different concepts. The volume is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the third edition are: mutually unbiased bases, Cayley transform, spectral theorem, nonnormal matrices, Gâteaux derivatives and matrices, trace and partial trace, spin coherent states, Clebsch-Gordan series, entanglement, hyperdeterminant, tensor eigenvalue problem, Carleman matrix and Bell matrix, tensor fields and Ricci tensors, and software implementations.




Tensor Network Contractions


Book Description

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.




Introduction to Matrix Analysis and Applications


Book Description

Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.




Introduction to Representation Theory


Book Description

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.