Contrast-Enhanced Mammography


Book Description

This book is a comprehensive guide to contrast-enhanced mammography (CEM), a novel advanced mammography technique using dual-energy mammography in combination with intravenous contrast administration in order to increase the diagnostic performance of digital mammography. Readers will find helpful information on the principles of CEM and indications for the technique. Detailed attention is devoted to image interpretation, with presentation of case examples and highlighting of pitfalls and artifacts. Other topics to be addressed include the establishment of a CEM program, the comparative merits of CEM and MRI, and the roles of CEM in screening populations and monitoring of response to neoadjuvant chemotherapy. CEM became commercially available in 2011 and is increasingly being used in clinical practice owing to its superiority over full-field digital mammography. This book will be an ideal source of knowledge and guidance for all who wish to start using the technique or to learn more about it.




Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007


Book Description

This title is part of a two-volume set that constitute the refereed proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2007. Coverage in this second volume includes computer assisted intervention and robotics, visualization and interaction, neuroscience image computing, computational anatomy, innovative clinical and biological applications, general biological imaging computing, computational physiology.




Handbook of MRI Pulse Sequences


Book Description

Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. - Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI - Provides self-contained sections for individual techniques - Can be used as a quick reference guide or as a resource for deeper study - Includes both non-mathematical and mathematical descriptions - Contains numerous figures, tables, references, and worked example problems




MRI from Picture to Proton


Book Description

Presents the basics of MR practice and theory as the practitioner first meets them.




Medical Image Understanding and Analysis


Book Description

This book constitutes the refereed proceedings of the 25th Conference on Medical Image Understanding and Analysis, MIUA 2021, held in July 2021. Due to COVID-19 pandemic the conference was held virtually. The 32 full papers and 8 short papers presented were carefully reviewed and selected from 77 submissions. They were organized according to following topical sections: biomarker detection; image registration, and reconstruction; image segmentation; generative models, biomedical simulation and modelling; classification; image enhancement, quality assessment, and data privacy; radiomics, predictive models, and quantitative imaging.




PET-CT-MRI Applications in Musculoskeletal Disorders, Part I, An Issue of PET Clinics


Book Description

This issue of PET Clinics is Part I of a two-part issue, and focuses on PET-CT-MRI Applications of Musculoskeletal Disorders. It is edited by Drs. Abass Alavi (the Consulting Editor of PET Clinics), Ali Salavati, Ali Gholamrezanezhad and Ali Guermazi. Articles will include: Basic principles, methodology, and imaging protocol for musculoskeletal applications; Sodium 18F-Fluoride PET-CT-MR of bone and joint disorders; In vivo molecular imaging of inflammation and infection; Radionuclide therapy for osseous metastases; Novel whole-body MR imaging techniques in MSK disorders; MRI of joint infection and inflammation with emphasis on DCE-MRI; Quantitative techniques for musculoskeletal MRI at 7 Tesla; Role of contrast enhanced (including iodine overlay image), spectral, and dual energy CT in MSK applications; Percutaneous thermal ablation in musculoskeletal system: Post-procedural PET-CT imaging; Soft tissue sarcomas of Musculoskeletal Origin; Application of PET/CT, PET/MR on primary bone malignancies; Future perspective of the application of PET-CT-MRI in musculoskeletal disorders, and more!




MRI of the Lung


Book Description

During the past decade significant developments have been achieved in the field of magnetic resonance imaging (MRI), enabling MRI to enter the clinical arena of chest imaging. Standard protocols can now be implemented on up-to-date scanners, allowing MRI to be used as a first-line imaging modality for various lung diseases, including cystic fibrosis, pulmonary hypertension and even lung cancer. The diagnostic benefits stem from the ability of MRI to visualize changes in lung structure while simultaneously imaging different aspects of lung function, such as perfusion, respiratory motion, ventilation and gas exchange. On this basis, novel quantitative surrogates for lung function can be obtained. This book provides a comprehensive overview of how to use MRI for imaging of lung disease. Special emphasis is placed on benign diseases requiring regular monitoring, given that it is patients with these diseases who derive the greatest benefit from the avoidance of ionizing radiation.




Medical Imaging


Book Description

The discovery of x-ray, as a landmark event, enabled us to see the "invisible," opening a new era in medical diagnostics. More importantly, it offered a unique undestanding around the interaction of electromagnetic signal with human tissue and the utility of its selective absorption, scattering, diffusion, and reflection as a tool for understanding




Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology


Book Description

Dynamic contrast-enhanced MRI is now established as the methodology of choice for the assessment of tumor microcirculation in vivo. The method assists clinical practitioners in the management of patients with solid tumors and is finding prominence in the assessment of tumor treatments, including anti-angiogenics, chemotherapy, and radiotherapy. Here, leading authorities discuss the principles of the methods, their practical implementation, and their application to specific tumor types. The text is an invaluable single-volume reference that covers all the latest developments in contrast-enhanced oncological MRI.




Quantitative Magnetic Resonance Imaging


Book Description

Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches