Analysis of Medical Modalities for Improved Diagnosis in Modern Healthcare


Book Description

In modern healthcare, various medical modalities play an important role in improving the diagnostic performance in healthcare systems for various applications, such as prosthesis design, surgical implant design, diagnosis and prognosis, and detection of abnormalities in the treatment of various diseases. Analysis of Medical Modalities for Improved Diagnosis in Modern Healthcare discusses the uses of analysis, modeling, and manipulation of modalities, such as EEG, ECG, EMG, PCG, EOG, MRI, and FMRI, for an automatic identification, classification, and diagnosis of different types of disorders and physiological states. The analysis and applications for post-processing and diagnosis are much-needed topics for researchers and faculty members all across the world in the field of automated and efficient diagnosis using medical modalities. To meet this need, this book emphasizes real-time challenges in medical modalities for a variety of applications for analysis, classification, identification, and diagnostic processes of healthcare systems. Each chapter starts with the introduction, need and motivation of the medical modality, and a number of applications for the identification and improvement of healthcare systems. The chapters can be read independently or consecutively by research scholars, graduate students, faculty members, and practicing scientists who wish to explore various disciplines of healthcare systems, such as computer sciences, medical sciences, and biomedical engineering. This book aims to improve the direction of future research and strengthen research efforts of healthcare systems through analysis of behavior, concepts, principles, and case studies. This book also aims to overcome the gap between usage of medical modalities and healthcare systems. Several novel applications of medical modalities have been unlocked in recent years, therefore new applications, challenges, and solutions for healthcare systems are the focus of this book.




Evidence-Based Medicine and the Changing Nature of Health Care


Book Description

Drawing on the work of the Roundtable on Evidence-Based Medicine, the 2007 IOM Annual Meeting assessed some of the rapidly occurring changes in health care related to new diagnostic and treatment tools, emerging genetic insights, the developments in information technology, and healthcare costs, and discussed the need for a stronger focus on evidence to ensure that the promise of scientific discovery and technological innovation is efficiently captured to provide the right care for the right patient at the right time. As new discoveries continue to expand the universe of medical interventions, treatments, and methods of care, the need for a more systematic approach to evidence development and application becomes increasingly critical. Without better information about the effectiveness of different treatment options, the resulting uncertainty can lead to the delivery of services that may be unnecessary, unproven, or even harmful. Improving the evidence-base for medicine holds great potential to increase the quality and efficiency of medical care. The Annual Meeting, held on October 8, 2007, brought together many of the nation's leading authorities on various aspects of the issues - both challenges and opportunities - to present their perspectives and engage in discussion with the IOM membership.




Improving Diagnosis in Health Care


Book Description

Getting the right diagnosis is a key aspect of health care - it provides an explanation of a patient's health problem and informs subsequent health care decisions. The diagnostic process is a complex, collaborative activity that involves clinical reasoning and information gathering to determine a patient's health problem. According to Improving Diagnosis in Health Care, diagnostic errors-inaccurate or delayed diagnoses-persist throughout all settings of care and continue to harm an unacceptable number of patients. It is likely that most people will experience at least one diagnostic error in their lifetime, sometimes with devastating consequences. Diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions. The committee concluded that improving the diagnostic process is not only possible, but also represents a moral, professional, and public health imperative. Improving Diagnosis in Health Care, a continuation of the landmark Institute of Medicine reports To Err Is Human (2000) and Crossing the Quality Chasm (2001), finds that diagnosis-and, in particular, the occurrence of diagnostic errorsâ€"has been largely unappreciated in efforts to improve the quality and safety of health care. Without a dedicated focus on improving diagnosis, diagnostic errors will likely worsen as the delivery of health care and the diagnostic process continue to increase in complexity. Just as the diagnostic process is a collaborative activity, improving diagnosis will require collaboration and a widespread commitment to change among health care professionals, health care organizations, patients and their families, researchers, and policy makers. The recommendations of Improving Diagnosis in Health Care contribute to the growing momentum for change in this crucial area of health care quality and safety.




Medical Imaging and Health Informatics


Book Description

MEDICAL IMAGING AND HEALTH INFORMATICS Provides a comprehensive review of artificial intelligence (AI) in medical imaging as well as practical recommendations for the usage of machine learning (ML) and deep learning (DL) techniques for clinical applications. Medical imaging and health informatics is a subfield of science and engineering which applies informatics to medicine and includes the study of design, development, and application of computational innovations to improve healthcare. The health domain has a wide range of challenges that can be addressed using computational approaches; therefore, the use of AI and associated technologies is becoming more common in society and healthcare. Currently, deep learning algorithms are a promising option for automated disease detection with high accuracy. Clinical data analysis employing these deep learning algorithms allows physicians to detect diseases earlier and treat patients more efficiently. Since these technologies have the potential to transform many aspects of patient care, disease detection, disease progression and pharmaceutical organization, approaches such as deep learning algorithms, convolutional neural networks, and image processing techniques are explored in this book. This book also delves into a wide range of image segmentation, classification, registration, computer-aided analysis applications, methodologies, algorithms, platforms, and tools; and gives a holistic approach to the application of AI in healthcare through case studies and innovative applications. It also shows how image processing, machine learning and deep learning techniques can be applied for medical diagnostics in several specific health scenarios such as COVID-19, lung cancer, cardiovascular diseases, breast cancer, liver tumor, bone fractures, etc. Also highlighted are the significant issues and concerns regarding the use of AI in healthcare together with other allied areas, such as the Internet of Things (IoT) and medical informatics, to construct a global multidisciplinary forum. Audience The core audience comprises researchers and industry engineers, scientists, radiologists, healthcare professionals, data scientists who work in health informatics, computer vision and medical image analysis.




Improving Healthcare Quality in Europe Characteristics, Effectiveness and Implementation of Different Strategies


Book Description

This volume, developed by the Observatory together with OECD, provides an overall conceptual framework for understanding and applying strategies aimed at improving quality of care. Crucially, it summarizes available evidence on different quality strategies and provides recommendations for their implementation. This book is intended to help policy-makers to understand concepts of quality and to support them to evaluate single strategies and combinations of strategies.




Engineering a Learning Healthcare System


Book Description

Improving our nation's healthcare system is a challenge which, because of its scale and complexity, requires a creative approach and input from many different fields of expertise. Lessons from engineering have the potential to improve both the efficiency and quality of healthcare delivery. The fundamental notion of a high-performing healthcare system-one that increasingly is more effective, more efficient, safer, and higher quality-is rooted in continuous improvement principles that medicine shares with engineering. As part of its Learning Health System series of workshops, the Institute of Medicine's Roundtable on Value and Science-Driven Health Care and the National Academy of Engineering, hosted a workshop on lessons from systems and operations engineering that could be applied to health care. Building on previous work done in this area the workshop convened leading engineering practitioners, health professionals, and scholars to explore how the field might learn from and apply systems engineering principles in the design of a learning healthcare system. Engineering a Learning Healthcare System: A Look at the Future: Workshop Summary focuses on current major healthcare system challenges and what the field of engineering has to offer in the redesign of the system toward a learning healthcare system.




Smart Medical Imaging for Diagnosis and Treatment Planning


Book Description

This book presents advanced research on smart health technologies, focusing on the innovative transformations in diagnosis and treatment planning using medical imaging and data analysed by data science techniques. It shows how smart health technologies leverage artificial intelligence (AI) and big data analytics to provide more accurate and efficient diagnosis and treatment planning. In search for innovative and novel methods and techniques for health technologies and medical data processing, the book • Discusses applications of Artificial Intelligence, Data Science, Machine Learning, Deep Learning, the Internet of Things, Big Data, Cloud Computing; • Includes use of electronic patient records in healthcare, analysis of big data in medical diagnosis, reliability, and challenges of EPR and EHR in smart healthcare; • Explores evolving techniques for smart healthcare, its application in medical imaging and prediction in the fields of treatment planning; • Provides recent studies in AI-driven healthcare technologies and medical imaging to outline insight into smart healthcare technologies; • Discusses the role of big data in smart healthcare, computing techniques for healthcare for medical diagnosis and treatment planning; • Encompasses the ethical and legal challenges of using smart healthcare and medical data. This book serves as a valuable reference for researchers working on smart health technologies. Researchers of medical imaging, artificial intelligence, and data science along with healthcare domain will find it a great resource as well.




Computer-Assisted Analysis for Digital Medicinal Imagery


Book Description

The constantly evolving healthcare industry has experienced tremendous technological advancements that have significantly revolutionized medical imaging. However, with the increasing volume and complexity of medical image data, existing analysis methods must also be updated to be efficient and accurate. This is where the challenge lies—a need for a comprehensive solution that bridges the gap between cutting-edge technology and effective healthcare delivery. Computer-Assisted Analysis for Digital Medicinal Imagery offers a roadmap for navigating the intricate landscape of digital medicinal imagery analysis. Unlocking the power of machine learning and breaking down the basics provides researchers, clinicians, and students with the tools necessary to harness technology and improve healthcare outcomes.




The Role of Telehealth in an Evolving Health Care Environment


Book Description

In 1996, the Institute of Medicine (IOM) released its report Telemedicine: A Guide to Assessing Telecommunications for Health Care. In that report, the IOM Committee on Evaluating Clinical Applications of Telemedicine found telemedicine is similar in most respects to other technologies for which better evidence of effectiveness is also being demanded. Telemedicine, however, has some special characteristics-shared with information technologies generally-that warrant particular notice from evaluators and decision makers. Since that time, attention to telehealth has continued to grow in both the public and private sectors. Peer-reviewed journals and professional societies are devoted to telehealth, the federal government provides grant funding to promote the use of telehealth, and the private technology industry continues to develop new applications for telehealth. However, barriers remain to the use of telehealth modalities, including issues related to reimbursement, licensure, workforce, and costs. Also, some areas of telehealth have developed a stronger evidence base than others. The Health Resources and Service Administration (HRSA) sponsored the IOM in holding a workshop in Washington, DC, on August 8-9 2012, to examine how the use of telehealth technology can fit into the U.S. health care system. HRSA asked the IOM to focus on the potential for telehealth to serve geographically isolated individuals and extend the reach of scarce resources while also emphasizing the quality and value in the delivery of health care services. This workshop summary discusses the evolution of telehealth since 1996, including the increasing role of the private sector, policies that have promoted or delayed the use of telehealth, and consumer acceptance of telehealth. The Role of Telehealth in an Evolving Health Care Environment: Workshop Summary discusses the current evidence base for telehealth, including available data and gaps in data; discuss how technological developments, including mobile telehealth, electronic intensive care units, remote monitoring, social networking, and wearable devices, in conjunction with the push for electronic health records, is changing the delivery of health care in rural and urban environments. This report also summarizes actions that the U.S. Department of Health and Human Services (HHS) can undertake to further the use of telehealth to improve health care outcomes while controlling costs in the current health care environment.




Machine Learning in Healthcare


Book Description

Artificial intelligence (AI) and machine learning (ML) techniques play an important role in our daily lives by enhancing predictions and decision-making for the public in several fields such as financial services, real estate business, consumer goods, social media, etc. Despite several studies that have proved the efficacy of AI/ML tools in providing improved healthcare solutions, it has not gained the trust of health-care practitioners and medical scientists. This is due to poor reporting of the technology, variability in medical data, small datasets, and lack of standard guidelines for application of AI. Therefore, the development of new AI/ML tools for various domains of medicine is an ongoing field of research. Machine Learning in Healthcare: Fundamentals and Recent Applications discusses how to build various ML algorithms and how they can be applied to improve healthcare systems. Healthcare applications of AI are innumerable: medical data analysis, early detection and diagnosis of disease, providing objective-based evidence to reduce human errors, curtailing inter- and intra-observer errors, risk identification and interventions for healthcare management, real-time health monitoring, assisting clinicians and patients for selecting appropriate medications, and evaluating drug responses. Extensive demonstrations and discussion on the various principles of machine learning and its application in healthcare is provided, along with solved examples and exercises. This text is ideal for readers interested in machine learning without any background knowledge and looking to implement machine-learning models for healthcare systems.