Econometric Analysis of Cross Section and Panel Data, second edition


Book Description

The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.




Applied Panel Data Analysis for Economic and Social Surveys


Book Description

Many economic and social surveys are designed as panel studies, which provide important data for describing social changes and testing causal relations between social phenomena. This textbook shows how to manage, describe, and model these kinds of data. It presents models for continuous and categorical dependent variables, focusing either on the level of these variables at different points in time or on their change over time. It covers fixed and random effects models, models for change scores and event history models. All statistical methods are explained in an application-centered style using research examples from scholarly journals, which can be replicated by the reader through data provided on the accompanying website. As all models are compared to each other, it provides valuable assistance with choosing the right model in applied research. The textbook is directed at master and doctoral students as well as applied researchers in the social sciences, psychology, business administration and economics. Readers should be familiar with linear regression and have a good understanding of ordinary least squares estimation. ​




Econometric Analysis of Panel Data


Book Description

Written by one of the world's leading researchers and writers in the field, Econometric Analysis of Panel Data has become established as the leading textbook for postgraduate courses in panel data. This new edition reflects the rapid developments in the field covering the vast research that has been conducted on panel data since its initial publication. Featuring the most recent empirical examples from panel data literature, data sets are also provided as well as the programs to implement the estimation and testing procedures described in the book. These programs will be made available via an accompanying website which will also contain solutions to end of chapter exercises that will appear in the book. The text has been fully updated with new material on dynamic panel data models and recent results on non-linear panel models and in particular work on limited dependent variables panel data models.




Causal Analysis with Panel Data


Book Description

Panel data, which consist of information gathered from the same individuals or units at several different points in time, are commonly used in the social sciences to test theories of individual and social change. This book provides an overview of models that are appropriate for the analysis of panel data, focusing specifically on the area where panels offer major advantages over cross-sectional research designs: the analysis of causal interrelationships among variables. Without "painting" panel data as a cure all for the problems of causal inference in nonexperimental research, the author shows how panel data offer multiple ways of strengthening the causal inference process. In addition, he shows how to estimate models that contain a variety of lag specifications, reciprocal effects, and imperfectly measured variables. Appropriate for readers who are familiar with multiple regression analysis and causal modeling, this book will offer readers the highlights of developments in this technique from diverse disciplines to analytic traditions.




Panel Data Econometrics


Book Description

Panel Data Econometrics: Theory introduces econometric modelling. Written by experts from diverse disciplines, the volume uses longitudinal datasets to illuminate applications for a variety of fields, such as banking, financial markets, tourism and transportation, auctions, and experimental economics. Contributors emphasize techniques and applications, and they accompany their explanations with case studies, empirical exercises and supplementary code in R. They also address panel data analysis in the context of productivity and efficiency analysis, where some of the most interesting applications and advancements have recently been made. - Provides a vast array of empirical applications useful to practitioners from different application environments - Accompanied by extensive case studies and empirical exercises - Includes empirical chapters accompanied by supplementary code in R, helping researchers replicate findings - Represents an accessible resource for diverse industries, including health, transportation, tourism, economic growth, and banking, where researchers are not always econometrics experts




Panel Data Econometrics


Book Description

In the last 20 years, econometric theory on panel data has developed rapidly, particularly for analyzing common behaviors among individuals over time. Meanwhile, the statistical methods employed by applied researchers have not kept up-to-date. This book attempts to fill in this gap by teaching researchers how to use the latest panel estimation methods correctly. Almost all applied economics articles use panel data or panel regressions. However, many empirical results from typical panel data analyses are not correctly executed. This book aims to help applied researchers to run panel regressions correctly and avoid common mistakes. The book explains how to model cross-sectional dependence, how to estimate a few key common variables, and how to identify them. It also provides guidance on how to separate out the long-run relationship and common dynamic and idiosyncratic dynamic relationships from a set of panel data. Aimed at applied researchers who want to learn about panel data econometrics by running statistical software, this book provides clear guidance and is supported by a full range of online teaching and learning materials. It includes practice sections on MATLAB, STATA, and GAUSS throughout, along with short and simple econometric theories on basic panel regressions for those who are unfamiliar with econometric theory on traditional panel regressions.




A Practical Guide to Using Panel Data


Book Description

This timely, thoughtful book provides a clear introduction to using panel data in research. It describes the different types of panel datasets commonly used for empirical analysis, and how to use them for cross sectional, panel, and event history analysis. Longhi and Nandi then guide the reader through the data management and estimation process, including the interpretation of the results and the preparation of the final output tables. Using existing data sets and structured as hands-on exercises, each chapter engages with practical issues associated with using data in research. These include: Data cleaning Data preparation Computation of descriptive statistics Using sample weights Choosing and implementing the right estimator Interpreting results Preparing final output tables Graphical representation Written by experienced authors this exciting textbook provides the practical tools needed to use panel data in research.




Longitudinal and Panel Data


Book Description

An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.




Panel Data Analysis using EViews


Book Description

A comprehensive and accessible guide to panel data analysis using EViews software This book explores the use of EViews software in creating panel data analysis using appropriate empirical models and real datasets. Guidance is given on developing alternative descriptive statistical summaries for evaluation and providing policy analysis based on pool panel data. Various alternative models based on panel data are explored, including univariate general linear models, fixed effect models and causal models, and guidance on the advantages and disadvantages of each one is given. Panel Data Analysis using EViews: Provides step-by-step guidance on how to apply EViews software to panel data analysis using appropriate empirical models and real datasets. Examines a variety of panel data models along with the author’s own empirical findings, demonstrating the advantages and limitations of each model. Presents growth models, time-related effects models, and polynomial models, in addition to the models which are commonly applied for panel data. Includes more than 250 examples divided into three groups of models (stacked, unstacked, and structured panel data), together with notes and comments. Provides guidance on which models not to use in a given scenario, along with advice on viable alternatives. Explores recent new developments in panel data analysis An essential tool for advanced undergraduate or graduate students and applied researchers in finance, econometrics and population studies. Statisticians and data analysts involved with data collected over long time periods will also find this book a useful resource.




Panel Data Econometrics


Book Description

Written by one of the world's leading experts on dynamic panel data reviews, this volume reviews most of the important topics in the subject. It deals with static models, dynamic models, discrete choice and related models.




Recent Books