Analytical Mechanics: A Comprehensive Treatise On The Dynamics Of Constrained Systems (Reprint Edition)


Book Description

This is a comprehensive, state-of-the-art, treatise on the energetic mechanics of Lagrange and Hamilton, that is, classical analytical dynamics, and its principal applications to constrained systems (contact, rolling, and servoconstraints). It is a book on advanced dynamics from a unified viewpoint, namely, the kinetic principle of virtual work, or principle of Lagrange. As such, it continues, renovates, and expands the grand tradition laid by such mechanics masters as Appell, Maggi, Whittaker, Heun, Hamel, Chetaev, Synge, Pars, Luré, Gantmacher, Neimark, and Fufaev. Many completely solved examples complement the theory, along with many problems (all of the latter with their answers and many of them with hints). Although written at an advanced level, the topics covered in this 1400-page volume (the most extensive ever written on analytical mechanics) are eminently readable and inclusive. It is of interest to engineers, physicists, and mathematicians; advanced undergraduate and graduate students and teachers; researchers and professionals; all will find this encyclopedic work an extraordinary asset; for classroom use or self-study. In this edition, corrections (of the original edition, 2002) have been incorporated.




Analytical Mechanics


Book Description

This is a comprehensive, state-of-the-art, treatise on the energetic mechanics of Lagrange and Hamilton, that is, classical analytical dynamics, and its principal applications to constrained systems (contact, rolling, and servoconstraints). It is a book on advanced dynamics from a unified viewpoint, namely, the kinetic principle of virtual work, or principle of Lagrange. As such, it continues, renovates, and expands the grand tradition laid by such mechanics masters as Appell, Maggi, Whittaker, Heun, Hamel, Chetaev, Synge, Pars, Luré, Gantmacher, Neimark, and Fufaev. Many completely solved examples complement the theory, along with many problems (all of the latter with their answers and many of them with hints). Although written at an advanced level, the topics covered in this 1400-page volume (the most extensive ever written on analytical mechanics) are eminently readable and inclusive. It is of interest to engineers, physicists, and mathematicians; advanced undergraduate and graduate students and teachers; researchers and professionals; all will find this encyclopedic work an extraordinary asset; for classroom use or self-study. In this edition, corrections (of the original edition, 2002) have been incorporated.




Modeling of Road Traffic Events


Book Description

This books reviews and brings readers up to date with the latest research knowledge on road traffic safety. It describes and discusses mathematical descriptions of the process of a motor vehicle crash and indicates the various factors that impact on collision models. It tackles also vehicle stability and shows how the forces generated in crashes result in different extents of post-accident repair. Mathematical models that simulate vehicle stability data are compared with those of real vehicles. Practical uses of the models are explained to readers. The book will be of interest to researchers in transport and vehicle technology well as automotive industry professionals.




Elastic Multibody Dynamics


Book Description

1. Background This textbook is an introduction to and exploration of a number of core topics in the ?eld of applied mechanics. Mechanics, in both its theoretical and applied contexts, is, like all scienti?c endeavors, a human construct. It re?ects the personalities, thoughts, errors, and successes of its creators. We therefore provide some personal information about each of these individuals when their names arise for the ?rst time in this book. This should enable the reader to piece together a cultural-historical picture of the ?eld s origins and development. This does not mean that we are writing history. Nevertheless, some remarks putting individuals and ideas in context are necessary in order to make clear what we are speaking about – and what we are not speaking about. At the end of the 19th century, technical universities were established eve- where in Europe in an almost euphoric manner. But the practice of technical mechanics itself, as one of the basics of technical development, was in a desolate state, due largely to the refusal of its practitioners to recognize the in?uence of kinetics on motion. They were correct to the extend that then current mechanical systems moved with small velocities where kinetics does not play a signi?cant role. But they had failed to keep up with developments in the science underlying their craft and were unable to keep pace with the speeds of such systems as the steam engine.







Geometric Control of Mechanical Systems


Book Description

The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.




Mechanics


Book Description

Mechanics is one of the oldest and at the same time newest disciplines, in the sense that there are methods and principles developed first in mechanics but now widely used in almost all branches of physics: electrodynamics, quantum mechanics, classical and quantum field theory, special and general theory of relativity, etc. More than that, there are some formalisms like Lagrangian and Hamiltonian approaches, which represent the key stone for the development of the above-mentioned disciplines. During the last 20-25 years, classical mechanics has undergone an important revival associated with the progress in non-linear dynamics, applications of Noether’s theorem and the extension of variational principles in various interdisciplinary sciences (for instance, magnetofluid dynamics). Thus, there ought to exist a book concerned with the applied analytical formalism, first developed in the frame of theoretical mechanics, which has proved to be one of the most efficient tools of investigation in the entire arena of science. The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, engineering, astronomy, applied mathematics and for researchers working in related subjects. We hope that the original presentation and the distribution of the topics, the various applications in many branches of physics and the set of more than 100 proposed problems, shall make this book a comprehensive and useful tool for students and researchers. The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, engineering, astronomy, applied mathematics and for researchers working in related subjects. We hope that the original presentation and the distribution of the topics, the various applications in many branches of physics and the set of more than 100 proposed problems, shall make this book a comprehensive and useful tool for students and researchers.




Stability and Convergence of Mechanical Systems with Unilateral Constraints


Book Description

While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.




Advanced Design of Mechanical Systems: From Analysis to Optimization


Book Description

Multibody systems are used extensively in the investigation of mechanical systems including structural and non-structural applications. It can be argued that among all the areas in solid mechanics the methodologies and applications associated to multibody dynamics are those that provide an ideal framework to aggregate d- ferent disciplines. This idea is clearly reflected, e. g. , in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, in finite elements where multibody dynamics provides - werful tools to describe large motion and kinematic restrictions between system components, in system control where the methodologies used in multibody dynamics are the prime form of describing the systems under analysis, or even in many - plications that involve fluid-structure interaction or aero elasticity. The development of industrial products or the development of analysis tools, using multibody dynamics methodologies, requires that the final result of the devel- ments are the best possible within some limitations, i. e. , they must be optimal. Furthermore, the performance of the developed systems must either be relatively insensitive to some of their design parameters or be sensitive in a controlled manner to other variables. Therefore, the sensitivity analysis of such systems is fundamental to support the decision making process. This book presents a broad range of tools for designing mechanical systems ranging from the kinematic and dynamic analysis of rigid and flexible multibody systems to their advanced optimization.




Tensor Calculus and Analytical Dynamics


Book Description

Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints. Written for the theoretically minded engineer, Tensor Calculus and Analytical Dynamics contains uniquely accessbile treatments of such intricate topics as: tensor calculus in nonholonomic variables Pfaffian nonholonomic constraints related integrability theory of Frobenius The book enables readers to move quickly and confidently in any particular geometry-based area of theoretical or applied mechanics in either classical or modern form.




Recent Books