Analytical Methods for Polymer Characterization


Book Description

Analytical Methods for Polymer Characterization presents a collection of methods for polymer analysis. Topics include chromatographic methods (gas chromatography, inverse gas chromatography, and pyrolysis gas chromatography), mass spectrometry, spectroscopic methods (ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance), thermal analysis (differential scanning calorimetry and thermogravimetry), microscopy methods (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy), and x-ray diffraction. The author also discusses mechanical and dynamic mechanical properties.




Polymer Characterization


Book Description

This volume provides an overview of polymer characterization test methods. The methods and instrumentation described represent modern analytical techniques useful to researchers, product development specialists, and quality control experts in polymer synthesis and manufacturing. Engineers, polymer scientists and technicians will find this volume useful in selecting approaches and techniques applicable to characterizing molecular, compositional, rheological, and thermodynamic properties of elastomers and plastics.




Spectroscopic Techniques for Polymer Characterization


Book Description

An insightful exploration of cutting-edge spectroscopic techniques in polymer characterization In Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications, a team of distinguished chemists delivers a comprehensive exploration of the vast potential of spectroscopic characterization techniques in polymer research. The book offers a concise outline of the principles, advantages, instrumentation, experimental techniques, and noteworthy applications of cutting-edge spectroscopy. Covering a wide range of polymers, from nylon to complex polymeric nanocomposites, the author presents recent developments in polymer science to polymer, analytical, and material chemists, assisting them in keeping track of the progress in modern spectroscopy. Spectroscopic Techniques for Polymer Characterization contains contributions from pioneers in modern spectroscopic techniques from around the world. The included materials bridge the gap between spectroscopists, polymer scientists, and engineers in academia and industry. The book also offers: A thorough introduction to the progress in spectroscopic techniques, including polymer spectroscopy and near-infrared spectroscopy Comprehensive explorations of topical polymers studied by spectroscopy, including polymer thin films, fluoropolymers, polymer solutions, conductive polymers Practical discussions of infrared imaging, near-infrared imaging, two-dimensional correlation spectroscopy, and far-ultraviolet spectroscopy In-depth examinations of spectroscopic studies of weak hydrogen bonding in polymers Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications is a must-read reference for polymer, analytical, and physical chemists, as well as materials scientists and spectroscopists seeking a one-stop resource for polymer characterization using spectroscopic analyses.




Practical Polymer Analysis


Book Description

The aim of this book is to familiarize the reader with the practical aspects of polymer analysis. A wealth of practical detail, including some detailed methods is included. The book covers not only the analysis of the main types of polymers and copolymers now in use commercially, but also the analysis of minor non-polymeric components of the polymer formulation, whether they be deliberately added, such as processing additives, or whether they occur adventitiously, such as moisture and residual monomers and solvent. A broad scheme for the examination of polymers is discussed in Chapter 2. Practically all of the major newer analytical techniques and many of the older classical techniques, have been used to examine polymers and their additive systems. As so many different polymers are now used commercially it is also advisable when attempting to identify a polymer to classify it by first separating it into pure polymeric and gross non polymeric fractions (Chapter Z) and then carrying out at least a qualitative elemental analysis and possible a quantitative analysis (Chapters 3 and 4) and then in some cases, depending on the elements found, to carry out functional group analysis (Chapters 6 and 9).




Molecular Characterization of Polymers


Book Description

Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques. - Introduces a range of advanced characterization methods, covering aspects such as molecular weight, polydispersity, branching, composition, and tacticity - Enables the reader to understand and to compare the available technique, and implement the selected technique(s), with a view to improving properties of the polymeric material - Establishes a strong link between basic principles, characterization techniques, and real-life applications




Modern Methods of Polymer Characterization


Book Description

Presents the methods used for characterization of polymers. In addition to theory and basic principles, the instrumentation and apparatus necessary for methods used to study the kinetic and thermodynamic interactions of a polymer with its environment are covered in detail. Some of the methods examined include polymer separations and characterization by size exclusion and high performance chromatography, inverse gas chromatography, osmometry, viscometry, ultracentrifugation, light scattering and spectroscopy.




Characterization and Analysis of Polymers


Book Description

Based on Wiley's renowned Encyclopedia of Polymer Science and Technology, this book provides coverage of key methods of characterization of the physical and chemical properties of polymers, including atomic force microscopy, chromatographic methods, laser light scattering, nuclear magnetic resonance, and thermal analysis, among others. Written by prominent scholars from around the world, this reference presents over twenty-five self -contained articles on the most used analytical techniques currently practiced in polymer science.




Polymer Analysis


Book Description

This book introduces the techniques used for the analysis of polymers. It covers the main aspects of polymer science and technology; identification, polymerization, molecular weight, structure, surface properties, degradation and mechanical properties. * Clear explanations of each analytical technique * Describes the application of techniques to the study of polymers * Encourages learning through numerous self-assessment questions and answers * Structured for flexible learning




Polymer Characterisation


Book Description

Polymers continue to play an ever increasing role in the modern world. In fact it is quite inconceivable to most people that we could ever have existed of the increased volume and variety of materials without them. As a result currently available, and the diversity of their application, characterisation has become an essential requirement of industrial and academic laboratories in volved with polymeric materials. On the one hand requirements may come from polymer specialists involved in the design and synthesis of new materials who require a detailed understanding of the relationship between the precise molecular architecture and the properties of the polymer in order to improve its capabilities and range of applications. On the other hand, many analysts who are not polymer specialists are faced with the problems of analysing and testing a wide range of polymeric materials for quality control or material specification purposes. We hope this book will be a useful reference for all scientists and techno or industrial laboratories, logists involved with polymers, whether in academic and irrespective of their scientific discipline. We have attempted to include in one volume all of the most important techniques. Obviously it is not possible to do this in any great depth but we have encouraged the use of specific examples to illustrate the range of possibilities. In addition numerous references are given to more detailed texts on specific subjects, to direct the reader where appropriate. The book is divided into II chapters.




Characterization and Failure Analysis of Plastics


Book Description

The selection and application of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This reference book on engineering plastics provides practical and comprehensive coverage on how the performance of plastics is characterized during design, property testing, and failure analysis. The fundamental structure and properties of plastics are reviewed for general reference, and detailed articles describe the important design factors, properties, and failure mechanisms of plastics. The effects of composition, processing, and structure are detailed in articles on the physical, chemical, thermal, and mechanical properties. Other articles cover failure mechanisms such as: crazing and fracture; impact loading; fatigue failure; wear failures, moisture related failure; organic chemical related failure; photolytic degradation; and microbial degradation. Characterization of plastics in failure analysis is described with additional articles on analysis of structure, surface analysis, and fractography.