Annual Fishes


Book Description

Annual Fishes: Life History Strategy, Diversity, and Evolution is the first comprehensive reference on current knowledge of diverse species that exhibit unique survival strategies and provide important models for basic and applied research. This work fills a void, covering the life cycle, reproductive biology, evolutionary ecology, reproductive beh




Age and Growth of Fishes


Book Description







Application of Fishes as Biological Models in Genetic Studies


Book Description

Although Gregor Mendel is considered the father of genetics, he has never taken the credit for his principles on heredity. Mendel's treatises, though they were part of the collection of the largest European libraries in the 19th century, were only rediscovered in 1900, 16 years after his death. Mendel's revolutionary ideas would have given greater strength to the formulation of Charles Darwin's ideas about common descent and gradual evolution through natural selection presented in 1859 in "The Origin of Species." However, Darwin was not totally ignorant of the possibility of genetic heredity. He even described “invisible characters” emerging in atavistic situations and named his hypothetical particle of heredity as “gemmules.” It is remarkable that the “invisible characters” and “gemmules” referred by Darwin are what we now know as genes – a term coined in 1909 by Wilhelm Johannsen that was widely accepted. During the 1930s and 40s, the findings of great proponents of genetics and evolution such as Mendel, Darwin, Wallace, Fisher, Haldane, Wright, Dobzhansky, Mayr, and several others were brought together to form the neo-Darwinian synthesis. In addition, in the 40s, genetics started its molecular revolution, which in the late 70s, driven by sequencing technology, gave rise to the genomics era. It took approximately 100 years to formulate the theoretical foundations of genetics to understand how information is transmitted to the next generations. Now, less than 45 years after the beginning of the genomic era, science is fully capable of identifying complete genomes. Among animals, fishes are one of the most relevant groups in genetic studies. Although fish studies were important in applying and corroborating Mendel's findings in the first decades of the 19th century, these studies contributed little to the development of classical genetics. However, fish have been of great importance for the development of molecular genetics. Several species such as Carassius auratus, Oryzias latipes, and Danio rerio (among several others of productive interest such as Salmo salar, Oreochromis niloticus, and Cyprinus carpio) have been used around the world as biological models. These models can be used for the study of genes and genomes, epigenetics, and genetic expression. Genetic studies using fish, in addition to increasing genetic knowledge about the species, also serve for a better general understanding of the physiology of metabolic pathways, diseases, evolution, systematics, dispersion, creation, and selection of individuals and lineages. Considering this, this Research Topic aims to bring together studies that present applications of fish as targets in genetic studies.




Genetic Studies of Fish


Book Description




Extremophile Fishes


Book Description

This book summarizes the key adaptations enabling extremophile fishes to survive under harsh environmental conditions. It reviews the most recent research on acidic, Antarctic, cave, desert, hypersaline, hypoxic, temporary, and fast-flowing habitats, as well as naturally and anthropogenically toxic waters, while pointing out generalities that are evident across different study systems. Knowledge of the different adaptations that allow fish to cope with stressful environmental conditions furthers our understanding of basic physiological, ecological, and evolutionary principles. In several cases, evidence is provided for how the adaptation to extreme environments promotes the emergence of new species. Furthermore, a link is made to conservation biology, and how human activities have exacerbated existing extreme environments and created new ones. The book concludes with a discussion of major open questions in our understanding of the ecology and evolution of life in extreme environments.




Ecology of Teleost Fishes


Book Description

Among the fishes, a remarkably wide range of biological adaptations to diverse habitats has evolved. As well as living in the conventional habitats of lakes, ponds, rivers, rock pools and the open sea, fish have solved the problems of life in deserts, in the deep sea, in the cold antarctic, and in warm waters of high alkalinity or of low oxygen. Along with these adaptations, we find the most impressive specializations of morphology, physiology and behaviour. For example we can marvel at the high-speed swimming of the marlins, sailfish and warm-blooded tunas, air-breathing in catfish and lungfish, parental care in the mouth-brooding cichlids and viviparity in many sharks and toothcarps. Moreover, fish are of considerable importance to the survival of the human species in the form of nutritious and delicious food of numerous kinds. Rational expoitation and management of our global stocks of fishes must rely upon a detailed and precise insight of their biology. The Chapman and Hall Fish and Fisheries Series aims to present timely volumes reviewing important aspects of fish biology. Most volumes will be of interest to research workers in biology, zoology, ecology and physiology but an additional aim is for the books to be accessible to a wide spectrum of non specialist readers ranging from undergraduates and postgraduates to those with an interest in industrial and commercial aspects of fish and fisheries.




Developmental Biology of Teleost Fishes


Book Description

In the compiling of this book, the vast literature dealing with the descriptive morphology, histology and cytology of teleost development has been combed and integrated. The book is divided into 21 chapters, starting with the egg and embryonic development up to hatching. This is followed by a description of ectodermal, mesodermal and entodermal derivatives and the development of various organs. The subject index, species index and the abundant illustrations add extra value to this long awaited book. Developmental Biology of Teleost Fishes will be a valuable tool for scientists and students in the fields of biology, developmental biology, molecular biology and fish biology.