Annual Research Briefs ...


Book Description










Large Eddy Simulation for Incompressible Flows


Book Description

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."




Numerical Simulations of Incompressible Flows


Book Description

"Consists mainly of papers presented at a workshop ... held in Half Moon Bay, California, June 19-21, 2001 ... to honor Dr. Dochan Kwak on the occasion of his 60th birthday ... organized by M. Hafez of University of California Davis and Dong Ho Lee of Seoul National University"--Dedication, p. ix.




Flow Control Techniques and Applications


Book Description

Providing comprehensive coverage, this is the first book to systematically introduce different flow control techniques. With a dedicated chapter for each technique, all of the most important, typical and up-to-date methods are discussed, including the vortex generator, biological techniques, the jet and synthetic jet, the plasma actuator, and closed-loop control. Understand their key characteristics and control mechanisms, and learn about their applications in different fields such as aviation and aerospace, mechanical engineering, and building construction. The necessary background on flow control is provided, including the history of the discipline, and the definition, classification and development of each technique, making this essential reading for graduate students, researchers and engineers working in the field.




High Performance Computing


Book Description

This book constitutes the refereed post-conference proceedings of 9 workshops held at the 35th International ISC High Performance 2021 Conference, in Frankfurt, Germany, in June-July 2021: Second International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics and Solid Mechanics Simulations and Analysis; HPC-IODC: HPC I/O in the Data Center Workshop; Compiler-assisted Correctness Checking and Performance Optimization for HPC; Machine Learning on HPC Systems;4th International Workshop on Interoperability of Supercomputing and Cloud Technologies;2nd International Workshop on Monitoring and Operational Data Analytics;16th Workshop on Virtualization in High-Performance Cloud Computing; Deep Learning on Supercomputers; 5th International Workshop on In Situ Visualization. The 35 papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include high-performance computing (HPC), computer architecture and hardware, programming models, system software, performance analysis and modeling, compiler analysis and optimization techniques, software sustainability, scientific applications, deep learning.




Computational Fluid Dynamics


Book Description

Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. - Will provide you with the knowledge required to develop and understand modern flow simulation codes - Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics - Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques




Large-Eddy Simulation in Hydraulics


Book Description

An introduction to the Large-Eddy-Simulation (LES) method, geared primarily toward hydraulic and environmental engineers, the book covers special features of flows in water bodies and summarizes the experience gained with LES for calculating such flows. It can also be a valuable entry to the subject of LES for researchers and students in all fields of fluids engineering, and the applications part will be useful to researchers interested in the physics of flows governed by the dynamics of coherent structures.




Wall Turbulence Control


Book Description

Wall turbulence control is a major subject, the investigation of which involves significant industrial, environmental and fundamental consequences. Wall Turbulence Control addresses recent advances achieved in active and passive wall turbulence control over the past two decades. This valuable reference for scientists, researchers and engineers provides an updated view of the research into this topic, including passive control, optimal and suboptimal control methodology, linear control and control using adaptive methods (neural networks), polymer and bubble injection, electromagnetic control and recent advances in control by plasma.