Annual Research Briefs ...


Book Description




Computational Fluid and Solid Mechanics 2003


Book Description

Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis




Large Eddy Simulation for Incompressible Flows


Book Description

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."




Facing the Heat Barrier


Book Description

Hypersonics is the study of flight at speeds where aerodynamic heating dominates the physics of the problem. Typically this is Mach 5 and higher. Hypersonics is an engineering science with close links to supersonics and engine design. Within this field, many of the most important results have been experimental. The principal facilities have been wind tunnels and related devices, which have produced flows with speeds up to orbital velocity. Why is it important? Hypersonics has had two major applications. The first has been to provide thermal protection during atmospheric entry. Success in this enterprise has supported ballistic-missile nose cones, has returned strategic reconnaissance photos from orbit and astronauts from the Moon, and has even dropped an instrument package into the atmosphere of Jupiter. The last of these approached Jupiter at four times the speed of a lunar mission returning to Earth. Work with re-entry has advanced rapidly because of its obvious importance. The second application has involved high-speed propulsion and has sought to develop the scramjet as an advanced airbreathing ramjet. Scramjets are built to run cool and thereby to achieve near-orbital speeds. They were important during the Strategic Defense Initiative, when a set of these engines was to power the experimental X-30 as a major new launch vehicle. This effort fell short, but the X-43A, carrying a scramjet, has recently flown at Mach 9.65 by using a rocket. Atmospheric entry today is fully mature as an engineering discipline. Still, the Jupiter experience shows that work with its applications continues to reach for new achievements. Studies of scramjets, by contrast, still seek full success, in which such engines can accelerate a vehicle without the use of rockets. Hence, there is much to do in this area as well. For instance, work with computers may soon show just how good scramjets can become. NASA SP-2007-4232




Mathematics of Large Eddy Simulation of Turbulent Flows


Book Description

The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field




Advanced Computational Methods in Science and Engineering


Book Description

The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.




Large-Eddy Simulation in Hydraulics


Book Description

An introduction to the Large-Eddy-Simulation (LES) method, geared primarily toward hydraulic and environmental engineers, the book covers special features of flows in water bodies and summarizes the experience gained with LES for calculating such flows. It can also be a valuable entry to the subject of LES for researchers and students in all fields of fluids engineering, and the applications part will be useful to researchers interested in the physics of flows governed by the dynamics of coherent structures.




Turbulent Premixed Flames


Book Description

A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.




Numerical Mathematics and Advanced Applications


Book Description

These proceedings collect lectures given at ENUMATH 2005, the 6th European Conference on Numerical Mathematics and Advanced Applications held in Santiago de Compostela, Spain in July, 2005. Topics include applications such as fluid dynamics, electromagnetism, structural mechanics, interface problems, waves, finance, heat transfer, unbounded domains, numerical linear algebra, convection-diffusion, as well as methodologies such as a posteriori error estimates, discontinuous Galerkin methods, multiscale methods, optimization, and more.




Foundations of Circulation Control Based Small-Scale Unmanned Aircraft


Book Description

This book focuses on using and implementing Circulation Control (CC) - an active flow control method used to produce increased lift over the traditionally used systems, like flaps, slats, etc. - to design a new type of fixed-wing unmanned aircraft that are endowed with improved aerodynamic efficiency, enhanced endurance, increased useful payload (fuel capacity, battery cells, on-board sensors) during cruise flight, delayed stall, and reduced runway during takeoff and landing. It presents the foundations of a step-by-step comprehensive methodology from design to implementation and experimental testing of Coandǎ based Circulation Control Wings (CCWs) and CC system, both integral components of the new type of aircraft, called Unmanned Circulation Control Air Vehicle. The methodology is composed of seven coupled phases: theoretical and mathematical analysis, design, simulation, 3-D printing/prototyping, wind tunnel testing, wing implementation and integration, and flight testing. The theoretical analysis focuses on understanding the physics of the flow and on defining the design parameters of the geometry restrictions of the wing and the plenum. The design phase centers on: designs of Coandǎ surfaces based on wing geometry specifications; designing and modifying airfoils from well-known ones (NACA series, Clark-Y, etc.); plenum designs for flow uniformity; dual radius flap designs to delay flow separation and reduce cruise drag. The simulation phase focuses on Computational Fluid Dynamics (CFD) analysis and simulations, and on calculating lift and drag coefficients of the designed CCWs in a simulation environment. 3-D printing and prototyping focuses on the actual construction of the CCWs. Wind tunnel testing centers on experimental studies in a laboratory environment. One step before flight testing is implementation of the qualified CCW and integration on the UAV platform, along with the CC system. Flight testing is the final phase, where design validation is performed. This book is the first of its kind, and it is suitable for students and researchers interested in the design and development of CCWs for small-scale aircraft. Background knowledge on fundamental Aerodynamics is required.