Application of Fishes as Biological Models in Genetic Studies


Book Description

Although Gregor Mendel is considered the father of genetics, he has never taken the credit for his principles on heredity. Mendel's treatises, though they were part of the collection of the largest European libraries in the 19th century, were only rediscovered in 1900, 16 years after his death. Mendel's revolutionary ideas would have given greater strength to the formulation of Charles Darwin's ideas about common descent and gradual evolution through natural selection presented in 1859 in "The Origin of Species." However, Darwin was not totally ignorant of the possibility of genetic heredity. He even described “invisible characters” emerging in atavistic situations and named his hypothetical particle of heredity as “gemmules.” It is remarkable that the “invisible characters” and “gemmules” referred by Darwin are what we now know as genes – a term coined in 1909 by Wilhelm Johannsen that was widely accepted. During the 1930s and 40s, the findings of great proponents of genetics and evolution such as Mendel, Darwin, Wallace, Fisher, Haldane, Wright, Dobzhansky, Mayr, and several others were brought together to form the neo-Darwinian synthesis. In addition, in the 40s, genetics started its molecular revolution, which in the late 70s, driven by sequencing technology, gave rise to the genomics era. It took approximately 100 years to formulate the theoretical foundations of genetics to understand how information is transmitted to the next generations. Now, less than 45 years after the beginning of the genomic era, science is fully capable of identifying complete genomes. Among animals, fishes are one of the most relevant groups in genetic studies. Although fish studies were important in applying and corroborating Mendel's findings in the first decades of the 19th century, these studies contributed little to the development of classical genetics. However, fish have been of great importance for the development of molecular genetics. Several species such as Carassius auratus, Oryzias latipes, and Danio rerio (among several others of productive interest such as Salmo salar, Oreochromis niloticus, and Cyprinus carpio) have been used around the world as biological models. These models can be used for the study of genes and genomes, epigenetics, and genetic expression. Genetic studies using fish, in addition to increasing genetic knowledge about the species, also serve for a better general understanding of the physiology of metabolic pathways, diseases, evolution, systematics, dispersion, creation, and selection of individuals and lineages. Considering this, this Research Topic aims to bring together studies that present applications of fish as targets in genetic studies.




Fish Development And Genetics: The Zebrafish And Medaka Models


Book Description

The zebrafish is the most important fish model in developmental and genetic analyses. This book contains 19 review articles covering a broad spectrum of topics, from development to genetic tools. The contents range from early development, the role of maternal factors and gastrulation, to tissue differentiation and organogenesis, such as development of the organizer, notochord, floor plate, nervous system, somites, muscle, skeleton and endoderm. The genetic tools cover morpholino knock-down, transgenics, fish cloning, transposons and genome evolution. The book also includes two chapters on genome mapping and embryonic stem cells in medaka, another important model fish. Summarizing the state-of-the-art studies of the zebrafish model and focusing on the molecular aspects of development, this book is a valuable reference for students learning the basic aspects of the zebrafish model, and for researchers seeking resources in zebrafish research.




Molecular Genetics in Fisheries


Book Description

The basic principle of all molecular genetic methods is to employ inherited, discrete and stable markers to identify genotypes that characterize individuals, populations or species. Such genetic data can provide information ori the levels and distribution of genetic variability in relation to mating patterns, life history, population size, migration and environment. Although molecular tools have long been employed to address various questions in fisheries biology and management, their contributions to the field are sometimes unclear, and often controversial. Much of the initial impetus for the deployment of molecular markers arose from the desire to assess fish stock structure based on various interpretations of the stock concept. Although such studies have met with varying success, they continue to provide an impetus for the development of increasingly sensitive population discriminators, yielding information that can be valuable for both sustainable exploitation and the conservation of fish populations. In the last major synthesis of the subject, Ryman and Utter (1987) summarized progress and applications, though this was prior to the wide-scale adoption of DNA methodology. New sources of genetic markers and protocols are now available, in particular those that exploit the widely distributed and highly variable repeat sequences of DNA, and the amplification technique of the polymerase chain reaction.




Biotechnology and Genetics in Fisheries and Aquaculture


Book Description

Following the extremely well-received structure of the firstedition, this carefully revised and updated new edition nowincludes much new information of vital importance to those workingand researching in the fisheries and aquaculture industries. Commencing with chapters covering genetic variation and how itcan be measured, the authors then look at genetic structure innatural populations, followed by a new chapter covering genetics inrelation to population size and conservation issues. Geneticvariation of traits and triploids and the manipulation of ploidyare fully covered, and another new chapter is included, entitled'From Genetics to Genomics'. The book concludes with a chaptercovering the impact of genetic engineering in aquaculture. With the inclusion of a wealth of up-to-date information, newtext and figures and the inclusion of a third author, PierreBoudry, the second edition of Biotechnology and Genetics inFisheries and Aquaculture provides an excellent text andreference of great value and use to upper level students andprofessionals working across fish biology, aquatic sciences,fisheries, aquaculture, genetics and biotechnology. Libraries inall universities and research establishments where biologicalsciences, fisheries and aquaculture are studied and taught shouldhave several copies of this excellent new edition on theirshelves. Completely updated, revised and expanded new edition Subject area of ever increasing importance Expanded authorship Commercially useful information for fish breeders




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




Genetics, Evolution, and Conservation of Neotropical Fishes


Book Description

Fish represent the most ancestral and specious group of vertebrates, and occupy more diverse aquatic environments around the world. Ichthyofauna is extremely diverse, especially in megadiverse countries occupying biogeographical regions such as the Neotropical Region, which covers an extensive area between North and South America. Much of this biodiversity will be extinct, even before science knows any aspect of its biology. Like this, Neotropical fish genetics started in the end of the 70’s with papers studying the chromosomes of Hoplias malabaricus (Family Erythrinidae) and the karyotype variation among three genera of the family Anostomidae. The topic at that time was concentrated in two Institutions from the state of São Paulo, Southeastern Brazil. In the middle 80’s, the first Symposium on Neotropical Fish Cytogenetics was organized. Nowadays, the field of Neotropical Fish Genetics is present in Brazil, Colombia, Argentina, Uruguai, Venezula, Chile, and Equador, as well as outside South America in Panama, Mexico, USA, Canada, Czech Republic, Germany, and Spain. The research developed in cytogenetics has focused mainly on karyotype evolution and cytotaxonomy, chromosome structure and, more recently, cytogenomics. In relation to the use of molecular markers, support has been sought for the management of populations for conservation or production in captivity. In addition, many studies have been carried out with the aim of establishing supra-specific phylogenetic relationships and clarifying species distribution scenarios by phylogeographic modeling. The genome and transcriptome of some model species begin to emerge as extremely promising and informative areas for neotropical fish. In 2017, the Neotropical fish genetics research community celebrates the 30th anniversary of its main Meeting (today entitled Symposium on Neotropical Fish Genetics and Cytogenetics). This Research Topic is part of this celebration and aims at reporting the state of the art and its current advances in the frontier of knowledge in genetics, evolution, and conservation of neotropical fish, as well as to detect the challenges to be overcome in the next years.




Cellular and Molecular Approaches in Fish Biology


Book Description

Cellular and Molecular Approaches in Fish Biology is a highly interdisciplinary resource to bring industry professionals, students and researchers up-to-date with the latest developments and information on fish biology research combining a historical overview of the different research areas in fish biology and detailed descriptions of cellular and molecular approaches with explanations and recommendations for research. The book presents a global perspective of each research area with detailed analytical methodologies on the cellular and molecular mechanisms within fish biology for expermentation. The book provides different points of view on how researchers have addressed timely issues, while describing and dissecting some of the new experimental/analytical approaches used to answer the key questions at cellular and molecular levels, making this a valuable resource to those in industry and academia as well as those entering the field. Provides detailed descriptions of each research approach, highlighting the tricks of the trade for its effective and successful application Includes the latest developments in fish reproduction, fish development and nutrition, fish welfare, fish immunology, ecology and biomedics Presents hot topics of research such as genetics, transcriptomics and epigenetics




Genetic Resources of Neotropical Fishes


Book Description

The aim of this book is to systematize and discuss population genetic studies of freshwater fish in a region that harbors the greatest diversity of species among all inland water ecosystems. This volume explores the genetic evaluation for a number of orders, families and species of Neotropical fishes, and provides an overview on genetic resources and diversity and their relationships with fish domestication, breeding, and food production.




Evolutionary Genetics of Fishes


Book Description

It is my hope that this collection of reviews can be profitably read by all who are interested in evolutionary biology. However, I would like to specifically target it for two disparate groups of biologists seldom men tioned in the same sentence, classical ichthyologists and molecular biologists. Since classical times, and perhaps even before, ichthyologists have stood in awe at the tremendous diversity of fishes. The bulk of effort in the field has always been directed toward understanding this diversity, i. e. , extracting from it a coherent picture of evolutionary processes and lineages. This effort has, in turn, always been overwhelmingly based upon morphological comparisons. The practical advantages of such compari sons, especially the ease with which morphological data can be had from preserved museum specimens, are manifold. But considered objectively (outside its context of "tradition"), morphological analysis alone is a poor tool for probing evolutionary processes or elucidating relationships. The concepts of "relationship" and of "evolution" are inherently genetic ones, and the genetic bases of morphological traits are seldom known in detail and frequently unknown entirely. Earlier in this century, several workers, notably Gordon, Kosswig, Schmidt, and, in his salad years, Carl Hubbs, pioneered the application of genetic techniques and modes of reasoning to ichthyology. While certain that most contemporary ichth yologists are familiar with this body of work, I am almost equally certain that few of them regard it as pertinent to their own efforts.




Zebrafish


Book Description

This fully updated edition introduces new tools, models, and analytic insights that position the zebrafish even more strongly as an engine of discovery for developmental and disease biology. Beginning with a section exploring detailed methods for use of zebrafish to model a variety of human diseases, the book continues by illuminating the key ongoing role of the fish model in studies of the vertebrate nervous system, tools and approaches using zebrafish to study stem cell and regenerative biology, as well as techniques in genetics and genomics. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, as well as tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Zebrafish: Methods and Protocols, Third Edition serves as an invaluable guide to propel advances in developmental biology, disease modeling, and regeneration research using zebrafish and medaka as model systems.