Applications of Automata Theory and Algebra


Book Description

This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book," became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now. This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics. The material and references have been brought up to date bythe editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life. The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds.










The q-theory of Finite Semigroups


Book Description

This comprehensive, encyclopedic text in four parts aims to give the reader — from the graduate student to the researcher/practitioner — a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, thereby updating and modernizing the semigroup theory literature.







Implementation and Application of Automata


Book Description

This book constitutes the thoroughly refereed papers of the 15th International Conference on Implementation and Application of Automata, CIAA 2010, held in Manitoba, Winnipeg, Canada, in August 2010. The 26 revised full papers together with 6 short papers were carefully selected from 52 submissions. The papers cover various topics such as applications of automata in computer-aided verification; natural language processing; pattern matching, data storage and retrieval; bioinformatics; algebra; graph theory; and foundational work on automata theory.




Advances in Unconventional Computing


Book Description

The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete authoritative account, of the theoretical and experimental findings in the unconventional computing written by the world leaders in the field. All chapters are self-contains, no specialist background is required to appreciate ideas, findings, constructs and designs presented. This treatise in unconventional computing appeals to readers from all walks of life, from high-school pupils to university professors, from mathematicians, computers scientists and engineers to chemists and biologists.




Mathematical Hierarchies and Biology


Book Description

Twenty-four articles from the November 1996 workshop investigate the reconstruction of trees or ranking hierarchies from dissimilarity or entity-to-character data, the use of hierarchies for modeling evolution and other processes, and the combining of gene trees. Included are mathematical treatments of hierarchies in the frameworks of set systems, linear subspaces, graph objects, and tree metrics in their analyses. Such current applications as learning robots, intron evolution, and the development of language are addressed. Annotation copyrighted by Book News, Inc., Portland, OR.




Artificial Life and Computational Intelligence


Book Description

This book constitutes the refereed proceedings of the First Australasian Conference on Artificial Life and Computational Intelligence, ACALCI 2015, held in Newcastle, NSW, Australia, in February 2015. The 34 revised full papers presented were carefully reviewed and selected from 63 submissions. The papers are organized in the following topical sections: philosophy and theory; game environments and methods; learning, memory and optimization; and applications and implementations.




Algebraic Engineering - Proceedings Of The First International Conference On Semigroups And Algebraic Eng And Workshop On For


Book Description

There is algebraic structure in time, computation and biological systems. Algebraic engineering exploits this structure to achieve better understanding and design. In this book, pure and applied results in semigroups, language theory and algebra are applied to areas ranging from circuit design to software engineering to biological evolution.