Quantum Dots


Book Description

A comprehensive review of cutting-edge solid state research, focusing on quantum dot nanostructures, for graduate students and researchers.




Quantum Dots


Book Description

The book provides a thorough survey of current research in quantum dots synthesis, properties, and applications. The unique properties of these new nanomaterials offer multifunctional applications in such fields as photovoltaics, light-emitting diodes, field-effect transistors, lasers, photodetectors, solar cells, biomedical diagnostics and quantum computing. Keywords: Quantum Dots (QD), Photovoltaics, Light-emitting Diodes, Field-effect Transistors, Lasers, Photodetectors, Solar Cells, Biomedical Diagnostics, Quantum Computing, QD Synthesis, Carbon QDs, Graphene QDs, QD Sensors, Supercapacitors, Magnetic Quantum Dots, Cellular/Molecular Separation, Chromatographic Separation Column, Photostability, Luminescence of Carbon QDs, QD Materials for Water Treatment, Semiconductor Quantum Dots, QD Drug Delivery, Antibacterial Quantum Dots.




Applications of Quantum Dots


Book Description

Applications of Quantum Dots starts with a basic introduction that includes the characterization, usage and preparation in biological systems. Quantum dots have a broad spectrum of applications and this text book has covered the major applications like uncovering active precursors in colloidal quantum dot synthesis or designing artificial 2D crystals with site and size controlled quantum dots. The readers can also get the information regarding the recent developments in quantum dots/cnt co-sensitized organic solar cells and accumulation and distribution of non-targeted and anti-cd44-conjugated quantum dots in distinct phenotypes of breast cancer. Further the book also highlights the potential use of quantum dots in flow cytometry.




Single Quantum Dots


Book Description

Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.




Electroanalytical Applications of Quantum Dot-Based Biosensors


Book Description

Quantum dots (QDs) are hybrid organic/inorganic nanoparticles with novel physical properties. QDs have two components: an inorganic core and an optically active coated shell. Moreover, surface coatings can be applied to QDs to modify the particle as needed for experiments. Hydrophilic coatings prevent leaking of metal cargo from the core, enhancing the solubility in biological contexts and bind molecules, such as receptor–ligands, antibodies, therapeutic, and diagnostic macromolecules for enhanced effects. Their high surface-to-volume ratio allows multiple functional groups to attach onto the surface of the particles at constant surface volume. Silicon-, gallium-, indium-, or germanium-based; cadmium-based; and carbon-based QDs have already been used in many applications, such as imaging probes for the engineering of multifunctional nanodevices. Superior properties of QDs make them an excellent system in technology and biotechnology.This book describes electroanalytical applications of QD-based nanobiosensors, including brief information about the synthesis and characterization of QDs and basics of electroanalytical methods, followed by QDs in electrochemical biomimetic sensors, QDs in microchips, inorganic materials doped QDs, QD-based electrochemical DNA biosensors, electroluminescence for biomarker analysis using aptamer-based QDs, QD-based photoelectrochemical techniques, enzyme-based nanobiosensors using QDs, QD-based electrochemical immunosensors, and QD-modified nanosensors in drug analysis. Outlines QD-based applications for drug, food, clinical, and environmental science Shows how the properties of QDs make them effective ingredients in biosensing applications Assesses the major challenges in integrating QDs in biosensing systems




Semiconductor Nanocrystal Quantum Dots


Book Description

This is the first book to specifically focus on semiconductor nanocrystals, and address their synthesis and assembly, optical properties and spectroscopy, and potential areas of nanocrystal-based devices. The enormous potential of nanoscience to impact on industrial output is now clear. Over the next two decades, much of the science will transfer into new products and processes. One emerging area where this challenge will be very successfully met is the field of semiconductor nanocrystals. Also known as colloidal quantum dots, their unique properties have attracted much attention in the last twenty years.




Quantum Dots


Book Description

This third edition provides revised and expanded protocols of consolidated approaches as well as new trends in the field. Chapters guide readers through new approaches to optimize Quantum Dots’ (QD) properties, to evaluate their quantum yields, important features about preparative processes and characterizations of QDs, methods related to QDs for live cell applications, and the versatility of QDs in the bioanalytical and biosensing field. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.




Perovskite Quantum Dots


Book Description

This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.







Quantum Dots


Book Description

Quantum dots (QDs) are luminescent semiconductor nanocrystals with unique chemical and physical properties due to their size and highly compact structure. QDs were first proposed for use in luminescent concentrators to replace organic dye molecules. In this book, the interest is in taking advantage of the emission properties of QDS, which can be tuned by their size, resulting from quantum confinement. In addition, the book discusses the potential of QDs as contrast and therapeutic agents in the field of medicine.