Applied Atomic Collision Physics


Book Description

Applied Atomic Collision Physics, Volume 1: Atmospheric Physics and Chemistry focuses on the applications of atomic collision physics in atmospheric physics and chemistry. The emphasis is on the physics of the upper atmospheres of the earth and planets as well as astrophysics, including solar physics, the physics of planetary nebulae, and reactions in interstellar space. Comprised of 12 chapters, this volume begins with an overview of the structure of the earth's atmosphere and its environment in interplanetary space, along with the structure of the terrestrial atmosphere at middle latitudes. The discussion then turns to the photochemistry of the midlatitude ionosphere; the thermal balance in the thermosphere at middle latitudes; atomic collisions in the lower ionosphere at midlatitudes; and airglow and auroras. Subsequent chapters explore the high latitude ionosphere, the exosphere, and the magnetosphere; the ionospheres of the planets and other bodies of the solar system; atmospheric processes involved in the stratospheric ozone problem; and solar physics. The final two chapters are concerned with applications to the physics of planetary nebulae and interstellar space. This book will be of interest to physicists and chemists.










Physics and Chemistry of the Upper Atmosphere


Book Description

A multitude of processes that operate in the upper atmosphere are revealed by detailed physical and mathematical descriptions of the interactions of particles and radiation, temperatures, spectroscopy and dynamics.




Fundamental Processes in Atomic Collision Physics


Book Description

The Proceedings of the Advanced study Institute on Fundamental Processes in Atomic Collision Physics (Santa Flavia, Italy, September 10-21, 1984) are dedicated to the memory of Sir Harrie r-1assey, whose scientific achievements and life are reviewed herein by Sir David Bates. At the first School on the above topic (Maratea, September 1983, Volume 103 in this series), Harrie Massey presented the introductory lectures, summarized the entire lecture program, and presented an outlook on future developments in atomic collision physics. In an after-dinner speech, Massey recalled personal reminiscences and historical events with regard to atomic collision physics, to which he had contributed by initiating pioneering work and by stimulating and surveying this branch of physics over a period of almost six decades. Participants in the Maratea School will always remember Harrie Massey as a charming and wonderful person who was most pleased to discuss with everyone--students, postdoctorals, and senior scientists--any topic in atomic collision physics. Harrie Massey was a member of the Scientific Advisory Committee of the 1984 Santa Flavia School. Before his death he expressed his interest in attending this second School devoted to the presentation of recent developments and highlights in atomic collision physics. It is the desire of all authors to honor Harrie Massey with their contributions in these Proceedings.










Electron—Molecule Interactions and Their Applications


Book Description

Electron-Molecule Interactions and Their Applications, Volume 2 provides a balanced and comprehensive account of electron-molecule interactions in dilute and dense gases and liquid media. This book consists of six chapters. Chapter 1 deals with electron transfer reactions, while Chapter 2 discusses electron-molecular positive-ion recombination. The electron motion in high-pressure gases and electron-molecule interactions from single- to multiple-collision conditions is deliberated in Chapter 3. In Chapter 4, knowledge on electron-molecule interactions in gases is linked to that on similar processes in the liquid state. Selected examples on the translation of the results of basic research on electron-molecule interactions to application are reviewed in Chapter 5. The last chapter covers the electron affinity of molecules, atoms, and radicals. This volume is a good reference for students and researchers conducting work on the intricate ways electrons and molecules interact in their encounters.




Swarm Studies and Inelastic Electron-Molecule Collisions


Book Description

This volume presents the contributions of participants in the Symposium on Swarm Studies and Inelastic Electron-Molecule Collisions, held on July 19-23, 1985, in Tahoe City, California. This was a joint meeting of the Fourth International Swarm Seminar and the Electron-Molecule Collisions Symposium which have been traditionally separate satellite symposia to the International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC). In the early stages of planning for these two satellite symposia to the XIVth ICPEAC, a group of us recognized the significant scientific merit and advantages of having a joint symposium. This idea was particularly appealing due to a large mutual interest in important advances (theoretical, experimental, and modeling) in both fields, and because it provides a forum to bring together a single-collision point of view with a multiple-collision one. For example, studies of multiple-term solutions to Boltzmann's equation and their application to swarm systems are intrinsically coupled to the availability of both integral and differential cross-sections for electron-molecule collisions. In tum, experimental and theoretical studies of these electron-molecule scattering cross-sections are becoming quite sophisticated, accurate, and comprehensive. Furthermore, in swarm studies, computational and experimental methods have advanced to the point where detailed and meaningful comparison with, and use of, single-collision beam data is now possible. More over, recent experimental advances in the study of single-collision electron at tachment phenomena have provided a significant overlap with swarm data and extension to subthermal energies.