Applied Data Structures with C++


Book Description

Data Structures & Theory of Computation




Data Structures Using Java


Book Description




Algorithms in a Nutshell


Book Description

Creating robust software requires the use of efficient algorithms, but programmers seldom think about them until a problem occurs. Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will: Solve a particular coding problem or improve on the performance of an existing solution Quickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to use Get algorithmic solutions in C, C++, Java, and Ruby with implementation tips Learn the expected performance of an algorithm, and the conditions it needs to perform at its best Discover the impact that similar design decisions have on different algorithms Learn advanced data structures to improve the efficiency of algorithms With Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.




Data Structures Using C++


Book Description

The latest book from Cengage Learning on Data Structures Using C++, International Edition




Advanced Data Structures


Book Description

Advanced Data Structures presents a comprehensive look at the ideas, analysis, and implementation details of data structures as a specialized topic in applied algorithms. Data structures are how data is stored within a computer, and how one can go about searching for data within. This text examines efficient ways to search and update sets of numbers, intervals, or strings by various data structures, such as search trees, structures for sets of intervals or piece-wise constant functions, orthogonal range search structures, heaps, union-find structures, dynamization and persistence of structures, structures for strings, and hash tables. This is the first volume to show data structures as a crucial algorithmic topic, rather than relegating them as trivial material used to illustrate object-oriented programming methodology, filling a void in the ever-increasing computer science market. Numerous code examples in C and more than 500 references make Advanced Data Structures an indispensable text. topic. Numerous code examples in C and more than 500 references make Advanced Data Structures an indispensable text.




Open Data Structures


Book Description

Introduction -- Array-based lists -- Linked lists -- Skiplists -- Hash tables -- Binary trees -- Random binary search trees -- Scapegoat trees -- Red-black trees -- Heaps -- Sorting algorithms -- Graphs -- Data structures for integers -- External memory searching.




C++ Programming: From Problem Analysis to Program Design


Book Description

Learn how to program with C++ using today’s definitive choice for your first programming language experience -- C++ PROGRAMMING: FROM PROBLEM ANALYSIS TO PROGRAM DESIGN, 8E. D.S. Malik’s time-tested, user-centered methodology incorporates a strong focus on problem-solving with full-code examples that vividly demonstrate the hows and whys of applying programming concepts and utilizing C++ to work through a problem. Thoroughly updated end-of-chapter exercises, more than 20 extensive new programming exercises, and numerous new examples drawn from Dr. Malik’s experience further strengthen the reader’s understanding of problem solving and program design in this new edition. This book highlights the most important features of C++ 14 Standard with timely discussions that ensure this edition equips you to succeed in your first programming experience and well beyond. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.




Data Structures and Algorithms in Java


Book Description

The design and analysis of efficient data structures has long been recognized as a key component of the Computer Science curriculum. Goodrich, Tomassia and Goldwasser's approach to this classic topic is based on the object-oriented paradigm as the framework of choice for the design of data structures. For each ADT presented in the text, the authors provide an associated Java interface. Concrete data structures realizing the ADTs are provided as Java classes implementing the interfaces. The Java code implementing fundamental data structures in this book is organized in a single Java package, net.datastructures. This package forms a coherent library of data structures and algorithms in Java specifically designed for educational purposes in a way that is complimentary with the Java Collections Framework.




Data Structures and Algorithms


Book Description




Algorithms and Data Structures for Massive Datasets


Book Description

Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting




Recent Books