Applied Differential Geometry


Book Description

This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.







Applied Differential Geometry


Book Description

This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the world's leading human motion simulator ? ?Human Biodynamics Engine?, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools ? this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models.




Differential Geometry


Book Description

This is the only text that introduces differential geometry by combining the following: an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach. Has running theme on the intrinsic/extrinsic view of curves and surfaces. *Uses basic intuitive geometry as a starting point which makes the material more accessible and the formalism more meaningful. *Topics are based on and introduced through 55 core problems. *The ribbon test for geometrically finding geodesics is introduced in Chapter 1. Then it is proven that it works in Chapter 3. Finally, using ruled surfaces in Chapter 7, it is proven that almost all geodesics can be found this way. *Introduces hyperbolic geometry in the first chapter. *Supports an intuitive grasp of concepts. *Includes 19 computer projects for use with Maple. *An Instructor's Manual with complete solutions for each problem is available.




Applied Differential Geometry: A Modern Introduction


Book Description

This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the world's leading human motion simulator — “Human Biodynamics Engine”, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools — this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models.




Manifolds and Differential Geometry


Book Description

Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.




Modern Differential Geometry of Curves and Surfaces with Mathematica


Book Description

Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.




An Introduction to Manifolds


Book Description

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.




Differential Geometry


Book Description

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.




Calculus on Manifolds


Book Description

This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.