Applied Time Series Analysis


Book Description

Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.




Applied Time Series Analysis II


Book Description

Applied Time Series Analysis II contains the proceedings of the Second Applied Time Series Symposium Held in Tulsa, Oklahoma, on March 3-5, 1980. The symposium provided a forum for discussing significant advances in time series analysis and signal processing. Effective alternatives to the familiar least-square and maximum likelihood procedures are described, along with maximum likelihood procedures for modeling irregularly sampled series and for classifying non-stationary series. Comprised of 22 chapters, this volume begins with an introduction to the multidimensional filtering theory and presents specific case histories related to the multidimensional recursive filter stability problem; the least squares inverse problem; realization of filters; and spectral estimation. The unique properties of the three-dimensional wave equation are also considered. Subsequent chapters focus on high-resolution spectral estimators; time series analysis of geophysical inverse scattering problems; minimum entropy deconvolution; and fitting of a continuous time autoregression to discrete data. This monograph will appeal to students and practitioners in the fields of mathematics and statistics, electrical and electronics engineering, and information and computer sciences.




Applied Time Series


Book Description

"Applied Time Series: Analysis and Forecasting provides the theories, methods and tools for necessary modeling and forecasting of time series. It includes a complete theoretical development of univariate time series models with each step demonstrated with an analysis of real time data series. The result is clear presentation, quantified subjective judgment derived from selected methods applied to time series observations."--Jacket




Applied Time Series Analysis with R


Book Description

Virtually any random process developing chronologically can be viewed as a time series. In economics closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis with R, Second Edition includes examples across a variety of fields, develops theory, and provides an R-based software package to aid in addressing time series problems in a broad spectrum of fields. The material is organized in an optimal format for graduate students in statistics as well as in the natural and social sciences to learn to use and understand the tools of applied time series analysis. Features Gives readers the ability to actually solve significant real-world problems Addresses many types of nonstationary time series and cutting-edge methodologies Promotes understanding of the data and associated models rather than viewing it as the output of a "black box" Provides the R package tswge available on CRAN which contains functions and over 100 real and simulated data sets to accompany the book. Extensive help regarding the use of tswge functions is provided in appendices and on an associated website. Over 150 exercises and extensive support for instructors The second edition includes additional real-data examples, uses R-based code that helps students easily analyze data, generate realizations from models, and explore the associated characteristics. It also adds discussion of new advances in the analysis of long memory data and data with time-varying frequencies (TVF).




Applied Time Series Econometrics


Book Description

Time series econometrics is a rapidly evolving field. Particularly, the cointegration revolution has had a substantial impact on applied analysis. Hence, no textbook has managed to cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out, reminding the reader of the ideas underlying them and giving sufficient background for empirical work. The treatment can also be used as a textbook for a course on applied time series econometrics. Topics include: unit root and cointegration analysis, structural vector autoregressions, conditional heteroskedasticity and nonlinear and nonparametric time series models. Crucial to empirical work is the software that is available for analysis. New methodology is typically only gradually incorporated into existing software packages. Therefore a flexible Java interface has been created, allowing readers to replicate the applications and conduct their own analyses.




Forecasting: principles and practice


Book Description

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.




Applied Nonlinear Time Series Analysis: Applications In Physics, Physiology And Finance


Book Description

Nonlinear time series methods have developed rapidly over a quarter of a century and have reached an advanced state of maturity during the last decade. Implementations of these methods for experimental data are now widely accepted and fairly routine; however, genuinely useful applications remain rare. This book focuses on the practice of applying these methods to solve real problems.To illustrate the usefulness of these methods, a wide variety of physical and physiological systems are considered. The technical tools utilized in this book fall into three distinct, but interconnected areas: quantitative measures of nonlinear dynamics, Monte-Carlo statistical hypothesis testing, and nonlinear modeling. Ten highly detailed applications serve as case studies of fruitful applications and illustrate the mathematical techniques described in the text.







Applied Time Series Analysis


Book Description

Virtually any random process developing chronologically can be viewed as a time series. In economics, closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis includes examples across a variety of fields, develops theory, and provides software to address time series problems in a broad spectrum of fields. The authors organize the information in such a format that graduate students in applied science, statistics, and economics can satisfactorily navigate their way through the book while maintaining mathematical rigor. One of the unique features of Applied Time Series Analysis is the associated software, GW-WINKS, designed to help students easily generate realizations from models and explore the associated model and data characteristics. The text explores many important new methodologies that have developed in time series, such as ARCH and GARCH processes, time varying frequencies (TVF), wavelets, and more. Other programs (some written in R and some requiring S-plus) are available on an associated website for performing computations related to the material in the final four chapters.




Practical Time Series Analysis


Book Description

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance