Applying Critical Mathematics Education


Book Description

This volume showcases new insights, teaching ideas and new and unique ways of applying critical mathematics education, in areas as diverse as climate change, obesity, decolonisation and ethnomathematics.







Applying Mathematics


Book Description

How is that when scientists need some piece of mathematics through which to frame their theory, it is there to hand? Bueno and French offer a new approach to the puzzle of the applicability of mathematics, through a detailed examination of a series of case studies from the history of twentieth-century physics.




Applying Mathematics


Book Description

How is that when scientists need some piece of mathematics through which to frame their theory, it is there to hand? What has been called 'the unreasonable effectiveness of mathematics' sets a challenge for philosophers. Some have responded to that challenge by arguing that mathematics is essentially anthropocentric in character, whereas others have pointed to the range of structures that mathematics offers. Otávio Bueno and Steven French offer a middle way, which focuses on the moves that have to be made in both the mathematics and the relevant physics in order to bring the two into appropriate relation. This relation can be captured via the inferential conception of the applicability of mathematics, which is formulated in terms of immersion, inference, and interpretation. In particular, the roles of idealisations and of surplus structure in science and mathematics respectively are brought to the fore and captured via an approach to models and theories that emphasize the partiality of the available information: the partial structures approach. The discussion as a whole is grounded in a number of case studies drawn from the history of quantum physics, and extended to contest recent claims that the explanatory role of certain mathematical structures in scientific practice supports a realist attitude towards them. The overall conclusion is that the effectiveness of mathematics does not seem unreasonable at all once close attention is paid to how it is actually applied in practice.




Critical Mathematics Education


Book Description

Mathematics is traditionally seen as the most neutral of disciplines, the furthest removed from the arguments and controversy of politics and social life. However, critical mathematics challenges these assumptions and actively attacks the idea that mathematics is pure, objective, and value?neutral. It argues that history, society, and politics have shaped mathematics—not only through its applications and uses but also through molding its concepts, methods, and even mathematical truth and proof, the very means of establishing truth. Critical mathematics education also attacks the neutrality of the teaching and learning of mathematics, showing how these are value?laden activities indissolubly linked to social and political life. Instead, it argues that the values of openness, dialogicality, criticality towards received opinion, empowerment of the learner, and social/political engagement and citizenship are necessary dimensions of the teaching and learning of mathematics, if it is to contribute towards democracy and social justice. This book draws together critical theoretic contributions on mathematics and mathematics education from leading researchers in the field. Recurring themes include: The natures of mathematics and critical mathematics education, issues of epistemology and ethics; Ideology, the hegemony of mathematics, ethnomathematics, and real?life education; Capitalism, globalization, politics, social class, habitus, citizenship and equity. The book demonstrates the links between these themes and the discipline of mathematics, and its critical teaching and learning. The outcome is a groundbreaking collection unified by a shared concern with critical perspectives of mathematics and education, and of the ways they impact on practice.




Advanced Mathematics for Applications


Book Description

The partial differential equations that govern scalar and vector fields are the very language used to model a variety of phenomena in solid mechanics, fluid flow, acoustics, heat transfer, electromagnetism and many others. A knowledge of the main equations and of the methods for analyzing them is therefore essential to every working physical scientist and engineer. Andrea Prosperetti draws on many years' research experience to produce a guide to a wide variety of methods, ranging from classical Fourier-type series through to the theory of distributions and basic functional analysis. Theorems are stated precisely and their meaning explained, though proofs are mostly only sketched, with comments and examples being given more prominence. The book structure does not require sequential reading: each chapter is self-contained and users can fashion their own path through the material. Topics are first introduced in the context of applications, and later complemented by a more thorough presentation.




Pattern Theory


Book Description

Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probabilistic models whose samples reproduce the look and feel of the real signals, their patterns, and their variability. Bayesian statistical inference then allows you to apply these models in the analysis o




Essential Mathematics for Games and Interactive Applications


Book Description

Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.




Chaim L. Pekeris and the Art of Applying Mathematics with WEIZAC, 1955–1963


Book Description

This book describes the groundbreaking work of Chaim Leib Pekeris and his collaborators. Between 1955 and 1963 they used the first electronic computer built in Israel, the Weizmann Automatic Computer (WEIZAC), to develop powerful numerical methods that helped achieve new and accurate solutions of the Boltzmann equation, calculate energy levels of the helium atom, produce detailed geophysical and seismological models derived from the study of the free oscillations of the earth, and refine models used to predict meteorological phenomena and global oceanic tides. This book provides a unique account of the pioneering work of Chaim L. Pekeris in applied mathematics and explains in detail the background to the rise of the Weizmann Institute as a world-class center of scientific excellence. This hitherto untold story is of great interest to historians of twentieth-century science with special emphasis on the application of computer-assisted numerical methods in various branches of mathematical physics.




Methods of Mathematics Applied to Calculus, Probability, and Statistics


Book Description

This 4-part treatment begins with algebra and analytic geometry and proceeds to an exploration of the calculus of algebraic functions and transcendental functions and applications. 1985 edition. Includes 310 figures and 18 tables.