Artificial Muscles


Book Description

Smart materials are the way of the future in a variety of fields, from biomedical engineering and chemistry to nanoscience, nanotechnology, and robotics. Featuring an interdisciplinary approach to smart materials and structures, this second edition of Artificial Muscles: Applications of Advanced Polymeric Nanocomposites has been fully updated to thoroughly review the latest knowledge of ionic polymeric conductor nanocomposites (IPCNCs), including ionic polymeric metal nanocomposites (IPMNCs) as biomimetic distributed nanosensors, nanoactuators, nanotransducers, nanorobots, artificial muscles, and electrically controllable intelligent polymeric network structures. Authored by one of the founding fathers of the field, the book introduces fabrication and manufacturing methods of several electrically and chemically active ionic polymeric sensors, actuators, and artificial muscles, as well as a new class of electrically active polymeric nanocomposites and artificial muscles. It also describes a few apparatuses for modeling and testing various artificial muscles to show the viability of chemoactive and electroactive muscles. It presents the theories, modeling, and numerical simulations of ionic polymeric artificial muscles’ electrodynamics and chemodynamics and features current industrial and medical applications of IPMNCs. By covering the fabrication techniques of and novel developments in advanced polymeric nanocomposites, this second edition continues to provides an accessible yet solid foundation to the subject while stimulating further research. Key features: Fully up to date with the latest cutting-edge discoveries in the field Authored by a world expert in the subject area Explores the exciting and growing topic of smart materials in medicine Mohsen Shahinpoor is Professor of Mechanical Engineering at the University of Maine and a leading expert in artificial muscles.




Electroactive Polymer (EAP) Actuators as Artificial Muscles


Book Description

Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.




Biomimetic Robotic Artificial Muscles


Book Description

Biomimetic Robotic Artificial Muscles presents a comprehensive up-to-date overview of several types of electroactive materials with a view of using them as biomimetic artificial muscles. The purpose of the book is to provide a focused, in-depth, yet self-contained treatment of recent advances made in several promising EAP materials. In particular, ionic polymer-metal composites, conjugated polymers, and dielectric elastomers are considered. Manufacturing, physical characterization, modeling, and control of the materials are presented. Namely, the book adopts a systems perspective to integrate recent developments in material processing, actuator design, control-oriented modeling, and device and robotic applications. While the main focus is on the new developments in these subjects, an effort has been made throughout the book to provide the reader with general, basic information about the materials before going into more advanced topics. As a result, the book is very much self-contained and expected to be accessible for a reader who does not have background in EAPs.Based on the good fundamental knowledge and the versatility of the materials, several promising biomimetic and robotic applications such robotic fish propelled by an IPMC tail, an IPMC energy harvester, an IPMC-based valveless pump, a conjugated polymer petal-driven micropump, and a synthetic elastomer actuator-enabled robotic finger are demonstrated.




Artificial Muscles


Book Description

Smart materials are the way of the future in a variety of fields, from biomedical engineering and chemistry to nanoscience, nanotechnology, and robotics. Featuring an interdisciplinary approach to smart materials and structures, Artificial Muscles: Applications of Advanced Polymeric Nanocomposites thoroughly reviews the existing knowledge of




Electroactive Polymers for Robotic Applications


Book Description

This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.




Intelligent Robotics and Applications


Book Description

The market demands for skills, knowledge and personalities have positioned robotics as an important field in both engineering and science. To meet these challenging - mands, robotics has already seen its success in automating many industrial tasks in factories. And, a new era will come for us to see a greater success of robotics in n- industrial environments. In anticipating a wider deployment of intelligent and auto- mous robots for tasks such as manufacturing, eldercare, homecare, edutainment, search and rescue, de-mining, surveillance, exploration, and security missions, it is necessary for us to push the frontier of robotics into a new dimension, in which motion and intelligence play equally important roles. After the success of the inaugural conference, the purpose of the Second Inter- tional Conference on Intelligent Robotics and Applications was to provide a venue where researchers, scientists, engineers and practitioners throughout the world could come together to present and discuss the latest achievement, future challenges and exciting applications of intelligent and autonomous robots. In particular, the emphasis of this year’s conference was on “robot intelligence for achieving digital manufact- ing and intelligent automations. ” This volume of Springer’s Lecture Notes in Artificial Intelligence and Lecture Notes in Computer Science contains accepted papers presented at ICIRA 2009, held in Singapore, December 16–18, 2009. On the basis of the reviews and recommendations by the international Program Committee members, we decided to accept 128 papers having technical novelty, out of 173 submissions received from different parts of the world.




Robotic Surgery


Book Description

Robotic surgery has already created a paradigm shift in medical surgical procedures and will continue to expand to all surgical and microsurgical interventions. There is no doubt that in doing so robotic surgical systems, such as the da Vinci surgical system, will become smarter and more sophisticated with the integration, implementation, and syner




Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials


Book Description

The Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials presents new and selected content from the 11-volume Biomedical Polymers and Polymeric Biomaterials Encyclopedia. The carefully culled content includes groundbreaking work from the earlier published work as well as exclusive online material added since its publication in print. A diverse and global team of renowned scientists provide cutting edge information concerning polymers and polymeric biomaterials. Acknowledging the evolving nature of the field, the encyclopedia also features newly added content in areas such as tissue engineering, tissue repair and reconstruction, and biomimetic materials.




Intelligent Robotics and Applications


Book Description

This three volume set LNAI 9244, 9245, and 9246 constitutes the refereed proceedings of the 8th International Conference on Intelligent Robotics and Applications, ICIRA 2015, held in Portsmouth, UK, in August 2015. The 60 papers included in the first volume are organized in topical sections on analysis and control for complex systems; marine vehicles and oceanic engineering; drives and actuators’ modeling; biomechatronics in bionic dexterous hand; robot actuators and sensors; intelligent visual systems; estimation and identification; and adaptive control system.




Micro/Nanorobots in Nanobiotechnology


Book Description

Micro/nanorobots have emerged as functional agents and versatile tools for investigating the complex microenvironments within biological systems. Operating at a scale comparable to cells, these micro/nanorobots offer controllable motion and customizable characteristics, whilst swarming micro/nanorobots exhibit exceptional efficiency, robustness, and adaptivity. As a result, these active particles hold significant potential for interacting with living cells, diseased tissues, and organs, offering viable approaches to uncovering natural principles of development and addressing diseases such as drug-tolerant infections and bacterial self-organization. To tackle these challenges, functionalized micro/nanorobots, through active intervention, can yield substantial effects on the development and treatment of cellular environments, bacterial biofilms, and tissue restoration. In this regard, we are organizing a special issue to delineate the current state of the art of micro/nanorobots in biological contexts and to advance therapeutics by elucidating the underlying mechanisms in living systems. In the contemporary era of advancing nanomedicine, the utilization of micro/nanorobots in clinical therapy is still in its nascent stages within the realm of modern healthcare. Biomedical and biological environments hold immense promise as platforms for these active agents, showcasing remarkable functionalities and efficacy in vitro, ex vivo, and in vivo. Micro/nanorobots have the capacity to emulate the behaviors of living cells, particularly bacteria, which play a crucial role in microbial infections, thus impacting public health and medical devices. These active agents possess the potential to overcome biological barriers and enable targeted therapies for various healthcare issues, including the prevention and treatment of diseased tissues and biofilms, which will significantly enhance the minimally invasive operations and remote treatments for the next-generation human healthcare system. The objectives of this research topic are threefold: (1) to investigate the novel functionalities of micro/nanorobots in biological contexts, (2) to unravel the underlying principles of cell, tissue, and organ development, and (3) to innovate active therapeutic approaches for addressing diseased tissues and microbial biofilms