Assessment of Safety and Risk with a Microscopic Model of Detonation


Book Description

Whereas the current plane wave, homogeneous flow detonation physics is an excellent engineering tool for numerical predictions under given conditions, the multi-hot-spot-model is an additional tool for analyzing phenomena that cannot be explained by classical calculations. The real benefit comes from being able to understand, without any artificial assumptions, the whole phenomenology of detonations and explosions. By specifying pressure generating mechanisms, one is able to see that the current treatment of the detonics of energetic materials is only a very special - but powerful - case of explosion events and hazards. It becomes clear that physical explosions must be taken into account in any safety considerations. In these terms it is easy to understand why even liquid carbon dioxide and inert silo materials can explode. A unique collection of unexpected events, which might surprise even specialists, has resulted from the evaluation of the model.-




Microscopic Theory of Detonation in Solids


Book Description

A detonation theory based on a microscopic model of a solid has been developed. This was accomplished by considering known physical and chemical properties of the individual molecules in the system. The results show that molecular vibrational energies, normal lattice frequencies and activation energies are the most important parameters in the model. Molecules having low vibrational energies are easier to detonate, according to the theory, because of the ease of creation of a population inversion or 'hot spot' in the system. A 'perfect crystal' would be more difficult to detonate because initiation would occur at one of the faces. However, the model shows that perfect crystals of unstable solids cannot be grown. Consequently, detonation in any real crystal will be initiated in the interior near a defect. The present model explains many experimental observations that cannot be explained on the basis of older theories of detonation. For example, the microscopic theory can easily explain the occurrence of explosions during growth of crystals from solutions. (Author).




High Explosives, Propellants, Pyrotechnics


Book Description

This dictionary contains 739 entries with about 1400 references to the primary literature. Details on the composition, performance, sensitivity and other pertinent properties of Energetic Materials such as High Explosives, Propellants, Pyrotechnics, as well as important ingredients such as Oxidizers, Fuels, Binders, and Modifiers are given and presented partly in over 180 tables with more than 240 structural formulas . In detail the dictionary gives elaborate descriptions of 460 Chemical Substances 170 Pyrotechnic Compositions 360 High Explosive and Propellant Formulations In addition, the basic physical and thermochemical properties of 435 pure substances (elements & compounds) typically occuring as ingredients or reaction products are given too. 150 Figures, schemes and diagrams explain Applications, Test methods, Scientific facilities, and finally Individuals closely tied with the development and investigation of Energetic Materials. The book is intended for readers with a technical or scientific background, active in governmental agencies, research institutes, trade and industry, concerned with the procurement, development, manufacture, investigation and use of Energetic Materials, such as High Explosives, Propellants, Pyrotechnics, Fireworks and Ammunition. The book serves both as a daily reference for the experienced as well as an introduction for the newcomer to the field.




Adiabatic Shear Localization


Book Description

Rev. ed. of: Adiabatic shear localization / Y. Bai and B. Dodd. 1992. 1st ed.




Organic Azides


Book Description

Most current state-of-the-art overview of this important class of compounds, encompassing many new and emerging applications The number of articles on organic azides continues to increase tremendously; on average, there are more than 1000 new publications a year Covers basic chemistry as well as state-of-the-art applications in life science and materials science World-ranked authors describe their own research in the wider context of azide chemistry Includes a chapter on safe synthesis and handling (azides can decompose explosively)




Ballistics


Book Description

Providing new chapters, homework problems, case studies, figures, and examples, Ballistics: Theory and Design of Guns and Ammunition, Second Edition encourages superior design and innovative applications in the field of ballistics. It examines the analytical and computational tools used to predict a weapon’s behavior in terms of pressure, stress, and velocity, demonstrating their applications in ammunition and weapons design. What’s New in the Second Edition: Includes computer examples in Mathcad (available on the CRC website) Adds a section of color plates, to better help readers visualize the physical concepts of ballistics Contains sections on modern explosives equations of state for detonation physics modeling and on probability of hit Provides a solutions manual for those teaching college and training courses This book covers exterior ballistics, exploring the physics behind trajectories, including linear and nonlinear aeroballistics, and focuses on the effects of projective impact, including details on shock physics, shaped charges, penetration, fragmentation, and wound ballistics. Reviews and integrates the fundamental science and engineering concepts involved in guns and ammunition Uses straightforward, easy-to-read style, and careful development of complex topics Shares insights rooted in the experience of renowned experts, many associated with the National Defense Industrial Association (NDIA) and International Ballistics Society The field of ballistics comprises three main areas of specialization: interior, exterior, and terminal ballistics. This book explains all three areas, offering a seamless presentation of the complex phenomena that occur during the launch, flight, and impact of a projectile.







Chemical Abstracts


Book Description




The Properties of Energetic Materials


Book Description

For a chemist who is concerned with the synthesis of new energetic compounds, it is essential to be able to assess physical and thermodynamic properties, as well as the sensitivity, of possible new energetic compounds before synthesis is attempted. Various approaches have been developed to predict important aspects of the physical and thermodynamic properties of energetic materials including (but not limited to): crystal density, heat of formation, melting point, enthalpy of fusion and enthalpy of sublimation of an organic energetic compound. Since an organic energetic material consists of metastable molecules capable of undergoing very rapid and highly exothermic reactions, many methods have been developed to estimate the sensitivity of an energetic compound with respect to detonationcausing external stimuli such as heat, friction, impact, shock and electrostatic discharge. This book introduces these methods and demonstrates those methods which can be easily applied.




Risk Assessment Methods


Book Description

Much has already been written about risk assessment. Epidemiologists write books on how risk assessment is used to explore the factors that influence the distribution of disease in populations of people. Toxicologists write books on how risk assess ment involves exposing animals to risk agents and concluding from the results what risks people might experience if similarly exposed. Engineers write books on how risk assessment is utilized to estimate the risks of constructing a new facility such as a nuclear power plant. Statisticians write books on how risk assessment may be used to analyze mortality or accident data to determine risks. There are already many books on risk assessment-the trouble is that they all seem to be about different sUbjects! This book takes another approach. It brings together all the methods for assessing risk into a common framework, thus demonstrating how the various methods relate to one another. This produces four important benefits: • First, it provides a comprehensive reference for risk assessment. This one source offers readers concise explanations of the many methods currently available for describing and quantifying diverse types of risks. • Second, it consistently evaluates and compares available risk assessment methods and identifies their specific strengths and limitations. Understand ing the limitations of risk assessment methods is important. The field is still in its infancy, and the problems with available methods are disappoint ingly numerous. At the same time, risk assessment is being used.