Asymmetric Hypersonic Flow


Book Description




Advances in Mechanical and Materials Technology


Book Description

This book presents select papers from the International Conference on Energy, Material Sciences and Mechanical Engineering (EMSME) - 2020. The book covers the three core areas of energy, material sciences and mechanical engineering. The topics covered include non-conventional energy resources, energy harvesting, polymers, composites, 2D materials, systems engineering, materials engineering, micro-machining, renewable energy, industrial engineering and additive manufacturing. This book will be useful to researchers and professionals working in the areas of mechanical and industrial engineering, materials applications, and energy technology.




Hypersonic and High Temperature Gas Dynamics


Book Description

This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.




Hypersonic Inviscid Flow


Book Description

Unified, self-contained view of nonequilibrium effects, body geometries, and similitudes available in hypersonic flow and thin shock layer; appropriate for graduate-level courses in hypersonic flow theory. 1966 edition.




AFOSR.


Book Description




Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies


Book Description

Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics.




NASA Technical Note


Book Description




Hypersonic Flow


Book Description

The Ideal Text/Reference for Students, Engineers, and Research Scientists Not since the early days of space flight has the subject of hypersonic flow been of such importance to aerospace and mechanical engineers, research scientists, and students. Spurred by visions of hypersonic transport, and aerospace planes, the government now supports studies of hypersonic flow in at least eighteen graduate research centers across the nation, and numerous major universities now offer graduate and senior level undergraduate courses on the subject. Hypersonic Flow is the ideal text/reference for students and professionals interested in this burgeoning field. Written by a nationally recognized authority on the subject, it features a clear, accessible writing style along with sufficient depth and detail for self-study, and it is organized for speedy location of specific information. Numerous end-of-chapter exercises and homework problems enhance and solidify the student’s understanding of complex and sophisticated material. This book provides an in-depth look at all the major topics and issues associated with fluid flow at speeds in excess of Mach 5, including: elementary hypersonic flow problems; general similarity concepts; elements of hypersonic small disturbance theory; and much more. In addition, this book brings you: The most extensive coverage of viscous effects available anywhere A unique, in-depth presentation of waveriders Extensive treatment of asymmetric conical flows An introduction to computational fluid dynamics Extensive treatment of real-gas effects




Scramjet Propulsion


Book Description