Asymptotic Methods in Nonlinear Wave Phenomena


Book Description

This book brings together several contributions from leading experts in the field of nonlinear wave propagation. This field, which during the last three decades has seen important breakthroughs from the theoretical point of view, has recently acquired increased relevance due to advances in the technology of fluids e.g. at microscale or nanoscale and the recognition of crucial applications to the understanding of biological phenomena.Nonlinear wave theory requires the use of disparate approaches, including formal and rigorous asymptotic methods, Lie group theory, energy methods, numerical analysis, and bifurcation theory. This book presents a unique blend in which different aspects of the theory are enlightened and several real-life applications are investigated. The book will be a valuable resource for applied scientists interested in some of the most recent advances in the theory and in the applications of wave propagation, shock formation, nonequilibrium thermodynamics and energy methods.




Linear and Nonlinear Waves in Microstructured Solids


Book Description

This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.




Asymptotic Methods In Nonlinear Wave Phenomena: In Honor Of The 65th Birthday Of Antonio Greco


Book Description

This book brings together several contributions from leading experts in the field of nonlinear wave propagation. This field, which during the last three decades has seen important breakthroughs from the theoretical point of view, has recently acquired increased relevance due to advances in the technology of fluids e.g. at microscale or nanoscale and the recognition of crucial applications to the understanding of biological phenomena.Nonlinear wave theory requires the use of disparate approaches, including formal and rigorous asymptotic methods, Lie group theory, energy methods, numerical analysis, and bifurcation theory. This book presents a unique blend in which different aspects of the theory are enlightened and several real-life applications are investigated. The book will be a valuable resource for applied scientists interested in some of the most recent advances in the theory and in the applications of wave propagation, shock formation, nonequilibrium thermodynamics and energy methods.




Nonlinear Dispersive Waves


Book Description

The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.




A Nonlinear Progress to Modern Soliton Theory


Book Description

This book provides a historical account of the discovery in 1834 of a remarkable singular wave that was ultimately to lead to the development of modern soliton theory with its diverse physical applications. In terms of associated geometry, the classical work of Bäcklund and Bianchi and its consequences is recounted, notably with regard to nonlinear superposition principles, which later were shown to be generic to soliton systems and which provide the analytic description of complex multi-soliton interaction. Whereas the applications of modern soliton in certain areas of physics are well-documented, deep connections between soliton theory and nonlinear continuum mechanics have had a separate development. This book describes wide applications in such disparate areas as elastostatics, elastodynamics, superelasticity, shell theory, magnetohydrostatics and magnetohydrodynamics, and will appeal to research scientists and advanced students with an interest in integrable systems in nonlinear physics or continuum mechanics.




3D Modeling of Nonlinear Wave Phenomena on Shallow Water Surfaces


Book Description

With climate change, erosion, and human encroachment on coastal environments growing all over the world, it is increasingly important to protect populations and environments close to the sea from storms, tsunamis, and other events that can be not just costly to property but deadly. This book is one step in bringing the science of protection from these events forward, the most in-depth study of its kind ever published. The analytic and numerical modeling problems of nonlinear wave activities in shallow water are analyzed in this work. Using the author's unique method described herein, the equations of shallow water are solved, and asymmetries that cannot be described by the Stokes theory are solved. Based on analytical expressions, the impacts of dispersion effects to wave profiles transformation are taken into account. The 3D models of the distribution and refraction of nonlinear surface gravity wave at the various coast formations are introduced, as well. The work covers the problems of numerical simulation of the run-up of nonlinear surface gravity waves in shallow water, transformation of the surface waves for the 1D case, and models for the refraction of numerical modeling of the run-up of nonlinear surface gravity waves at beach approach of various slopes. 2D and 3D modeling of nonlinear surface gravity waves are based on Navier-Stokes equations. In 2D modeling the influence of the bottom of the coastal zone on flooding of the coastal zone during storm surges was investigated. Various stages of the run-up of nonlinear surface gravity waves are introduced and analyzed. The 3D modeling process of the run-up is tested for the coast protection work of the slope type construction. Useful for students and veteran engineers and scientists alike, this is the only book covering these important issues facing anyone working with coastal models and ocean, coastal, and civil engineering in this area.




Proceedings, "WASCOM 2007"


Book Description

This volume is the fifth in a series of proceedings which started in 1999. The contributions include the latest results on the theory of wave propagation, extended thermodynamics, and the stability of the solutions to partial differential equations. Sample Chapter(s). Chapter 1: Reciprocal Transformations and Integrable Hamiltonian Hydrodynamic Type Systems (334 KB). Contents: Quantitative Estimates for the Large Time Behavior of a Reaction-Diffusion Equation with Rational Reaction Term (M Bisi et al.); Linearized Euler''s Variational Equations in Lagrangian Coordinates (G Boillat & Y J Peng); Restabilizing Forcing for a Diffusive Prey-Predator Model (B Buonomo & S Rionero); Fluid Dynamical Features of the Weak KAM Theory (F Cardin); Ricci Flow Deformation of Cosmological Initial Data Sets (M Carfora & T Buchert); Fuchsian Partial Differential Equations (Y Choquet-Bruhat); Analytic Structure of the Four-Wave Mixing Model in Photoreactive Material (R Conte & S Bugaychuk); A Note about Waves in Dissipative and Dispersive Solids (M Destrade & G Saccomandi); Exponential and Algebraic Relaxation in Kinetic Models for Wealth Distribution (B Dring et al.); Solitary Waves in Dispersive Materials (J Engelbrecht et al.); A GinzburgOCoLandau Model for the Ice-Water and Liquid-Vapor Phase Transitions (M Fabrizio); Stability Considerations for Reaction-Diffusion Systems (J N Flavin); A Mechanical Model for Liquid Nanolayers (H Gouin); A Particle Method for a Lotka-Volterra System with Nonlinear Cross and Self-Diffusion (M Groppi & M Sammartino); Transport Properties of Chemically Reacting Gas Mixtures (G M Kremer); Navier-Stokes in Aperture Domains: Existence with Bounded Flux and Qualitative Properties (P Maremonti); On Two-Pulse Interaction in a Class of Model Elastic Materials (A Mentrelli et al.); On a Particle-Size Segregation Equation (C Mineo & M Torrisi); Problems of Stability and Waves in Biological Systems (G Mulone); Multiple Cold and Hot Second Sound Shocks in HE II (A Muracchini & L Seccia); Differential Equations and Lie Symmetries (F Oliveri et al.); Bifurcation Analysis of Equilibria in Competitive Logistic Networks with Adaptation (A Raimondi & C Tebaldi); Poiseuille Flow of a Fluid Overlying a Porous Media (B Straughan); Analysis of Heat Conduction Phenomena in a One-Dimensional Hard-Point Gas by Extended Thermodynamics (S Tanigushi et al.); On Waves in Weakly Nonlinear Poroelastic Materials Modeling Impacts of Meteorites (K Wilmanski et al.); and other papers. Readership: Researchers in mathematics, physics, chemistry and engineering."




Nonlinear Waves in Integrable and Non-integrable Systems


Book Description

Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).




"WASCOM 2009"


Book Description

Contains contributions in the field of waves propagation and stability in continuous media.