Thermoelectricity


Book Description

Next-generation energy sources are crucial for combating the world’s energy crisis. One such alternative energy source is thermoelectricity, which is cost-efficient and environmentally friendly. This book presents a comprehensive overview of the progress made in thermoelectrics over the past few years with a focus on charge and heat carrier transport from both theoretical and experimental viewpoints. It also presents new strategies to improve thermoelectricity and discusses device physics and applications to guide the research community.




Oxide-Based Materials and Structures


Book Description

Oxide-based materials and structures are becoming increasingly important in a wide range of practical fields including microelectronics, photonics, spintronics, power harvesting, and energy storage in addition to having environmental applications. This book provides readers with a review of the latest research and an overview of cutting-edge patents received in the field. It covers a wide range of materials, techniques, and approaches that will be of interest to both established and early-career scientists in nanoscience and nanotechnology, surface and material science, and bioscience and bioengineering in addition to graduate students in these areas. Features: Contains the latest research and developments in this exciting and emerging field Explores both the fundamentals and applications of the research Covers a wide range of materials, techniques, and approaches




Chemical Solution Synthesis for Materials Design and Thin Film Device Applications


Book Description

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing




Bismuth


Book Description

Bismuth—a wonder metal with unique features—plays an important role in the bismuth-related optoelectronic materials. The innovative development of bismuth optoelectronic materials will undoubtedly drive the social development and economic growth in the world towards a glorious future.




Materials Science


Book Description

Today modern materials science is a vibrant, emerging scientific discipline at the forefront of physics, chemistry, engineering, biology and medicine, and is becoming increasingly international in scope as demonstrated by emerging international and intercontinental collaborations and exchanges. The overall purpose of this book is to provide timely and in-depth coverage of selected advanced topics in materials science. Divided into five sections, this book provides the latest research developments in many aspects of materials science. This book is of interest to both fundamental research and also to practicing scientists and will prove invaluable to all chemical engineers, industrial chemists and students in industry and academia.




What lies beneath? Investigations of atomic force microscopy-based nano-machining to reveal sub-surface ferroelectric domain configurations in ultrathin films


Book Description

Multiferroic materials, encompassing simultaneous ferroelectric and ferromagnetic polarization states, are enticing multi-state materials for memory scaling beyond existing technologies. Aurivillius phase B6TFMO (Bi6TixFeyMnzO18) is a unique room temperature multiferroic material that could ideally be suited to future production of revolutionary memory devices. As miniaturization of electronic devices continues, it is crucial to characterize ferroelectric domain configurations at very small (sub-10 nm) thickness. Direct liquid injection chemical vapor deposition allows for frontier development of ultrathin films at fundamental (close to unit cell) dimensions. However, layer-by-layer growth of ultrathin complex oxides is subject to the formation of surface contaminants and 2D islands and pits, which can obscure visualization of domain patterns using piezoresponse force microscopy (PFM). Herein, we apply force from a sufficiently stiff diamond cantilever while scanning over ultrathin films to perform atomic force microscopy (AFM)-based nano-machining of the surface layers. Subsequent lateral PFM imaging of sub-surface layers uncovers 45° orientated striped twin domains, entirely distinct from the randomly configured piezoresponse observed for the pristine film surface. Furthermore, our investigations indicate that these sub-surface domain structures persist along the in-plane directions throughout the film depth down to thicknesses of less than half of an Aurivillius phase unit cell (< 2.5 nm). Thus, AFM-based nano-machining in conjunction with PFM allows demonstration of stable in-plane ferroelectric domains at thicknesses lower than previously determined for multiferroic B6TFMO. These findings demonstrate the technological potential of Aurivillius phase B6TFMO for future miniaturized memory storage devices. Next-generation devices based on ultrathin multiferroic tunnel junctions are projected.




Magnetic Materials


Book Description

Magnetic Materials is an excellent introduction to the basics of magnetism, magnetic materials and their applications in modern device technologies. Retaining the concise style of the original, this edition has been thoroughly revised to address significant developments in the field, including the improved understanding of basic magnetic phenomena, new classes of materials, and changes to device paradigms. With homework problems, solutions to selected problems and a detailed list of references, Magnetic Materials continues to be the ideal book for a one-semester course and as a self-study guide for researchers new to the field. New to this edition: • Entirely new chapters on Exchange Bias Coupling, Multiferroic and Magnetoelectric Materials, Magnetic Insulators • Revised throughout, with substantial updates to the chapters on Magnetic Recording and Magnetic Semiconductors, incorporating the latest advances in the field • New example problems with worked solutions




Advanced Nanomaterials


Book Description

A collection of highly selected, peer-reviewed chapters, this book showcases the research of an international roster of scientists. It covers nanomaterials with emphasis on synthesis, characterization, and applications. It also presents emerging developments in nanotechnology in areas as diverse as medicine, energy, electronics, and agriculture. In addition to engineering aspects, the book discusses the physics, chemistry and biotechnology behind the fabrication and device designing.




Spectroscopic Ellipsometry


Book Description

Ellipsometry is a powerful tool used for the characterization of thin films and multi-layer semiconductor structures. This book deals with fundamental principles and applications of spectroscopic ellipsometry (SE). Beginning with an overview of SE technologies the text moves on to focus on the data analysis of results obtained from SE, Fundamental data analyses, principles and physical backgrounds and the various materials used in different fields from LSI industry to biotechnology are described. The final chapter describes the latest developments of real-time monitoring and process control which have attracted significant attention in various scientific and industrial fields.




Magnetic, Ferroelectric, and Multiferroic Metal Oxides


Book Description

Magnetic, Ferroelectric, and Multiferroic Metal Oxides covers the fundamental and theoretical aspects of ferroics and magnetoelectrics, their properties, and important technological applications, serving as the most comprehensive, up-to-date reference on the subject. Organized in four parts, Dr. Biljana Stojanovic leads expert contributors in providing the context to understand the material (Part I: Introduction), the theoretical and practical aspects of ferroelectrics (Part II: Ferroelectrics: From Theory, Structure and Preparation to Application), magnetic metal oxides (Part III: Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics), multiferroics (Part IV: Multiferroic Metal Oxides) and future directions in research and application (Part V: Future of Metal Oxide Ferroics and Multiferroics). As ferroelectric materials are used to make capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects, this book will provide an ideal source for the most updated information. - Addresses ferroelectrics, ferromagnetics and multiferroelectrics, providing a one-stop reference for researchers - Provides fundamental theory and relevant, important technological applications - Highlights their use in capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects