Bacterial Integrative Mobile Genetic Elements


Book Description

As our understanding of mobile genetic elements continues to grow we are gaining a deeper appreciation of their importance in shaping the bacterial genome and in the properties they confer to their bacterial hosts. These include, but are by no means limited to, resistance to antibiotics, and heavy metals, toxin production and increased virulence, production of antibiotics and the ability to utilize a diverse range of metabolic substrates. We are also gaining an understanding of diversity of these elements and their interactions with each other; a property which continually complicates any attempt to classify them. We are learning more about the molecular mechanisms by which they translocate to new genomic sites both within genomes and between different bacteria. This book provides a timely, state of the art update on the properties of an important selection of different bacterial integrative mobile genetic elements and the myriad of different ways in which they move and influence the biology of the host bacterium. The chapters are all written by authors who have undertaken pioneering work in their respective fields, making this book vital reading for all who are interested in the biology of bacteria and the mobile elements they carry.




The Dynamic Bacterial Genome


Book Description

"This book provides an in-depth analysis of the mechanisms and biological consequences of genome rearrangements in bacteria. Each chapter examines the mechanisms involved in genome rearrangements and the direct biological consequences of these events. Because genome rearrangements are so important in evolution, at least one of the chapters views the phenomenon from an evolutionary angle. This book provides the reader with a holistic view of genome rearrangements (i.e., studies on both the biological consequences of genome rearrangement and the mechanisms underlying these processes are presented)." "The book is written by leading research workers in the field and is aimed at final-year undergraduates, postgraduate and postdoctoral workers, and established biologists."--BOOK JACKET.




Mobile DNA III


Book Description

An exploration of the raw power of genetic material to refashion itself to any purpose... Virtually all organisms contain multiple mobile DNAs that can move from place to place, and in some organisms, mobile DNA elements make up a significant portion of the genome. Mobile DNA III provides a comprehensive review of recent research, including findings suggesting the important role that mobile elements play in genome evolution and stability. Editor-in-Chief Nancy L. Craig assembled a team of multidisciplinary experts to develop this cutting-edge resource that covers the specific molecular mechanisms involved in recombination, including a detailed structural analysis of the enzymes responsible presents a detailed account of the many different recombination systems that can rearrange genomes examines the tremendous impact of mobile DNA in virtually all organisms Mobile DNA III is valuable as an in-depth supplemental reading for upper level life sciences students and as a reference for investigators exploring new biological systems. Biomedical researchers will find documentation of recent advances in understanding immune-antigen conflict between host and pathogen. It introduces biotechnicians to amazing tools for in vivo control of designer DNAs. It allows specialists to pick and choose advanced reviews of specific elements and to be drawn in by unexpected parallels and contrasts among the elements in diverse organisms. Mobile DNA III provides the most lucid reviews of these complex topics available anywhere.




The Pangenome


Book Description

This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.




Microbial Megaplasmids


Book Description

Megaplasmids are extrachromosomal genetic elements in the size range of 100 kb and larger. They are found in physiologically and phylogenetically diverse groups of bacteria and archaea. By definition, megaplasmids are not essential for the viability of their hosts under all growth conditions, but paradoxically many megaplasmids carry the genetic information for the defining and characteristic traits of the organism in which they reside. Microbial Megaplasmids reviews our knowledge of the extensively studied representatives, such as the catabolic plasmids of the pseudomonads, the rhizobial Sym plasmids, the Ti plasmids of the genus Agrobacterium and the giant enterobacterial virulence plasmids. It also presents snapshots of more recently discovered megaplasmids. The contribution of megaplasmids to the biology of their hosts is described, highlighting the interactions between megaplasmid and chromosomal genes.




Horizontal Gene Pool


Book Description

Bacteria are the most ubiquitous of all organisms. Responsible for a number of diseases and for many of the chemical cycles on which life depends, they are genetically adaptable. Vital to this adaptability is the existence of autonomous genetic elements-plasmids-which promote genetic exchange and recombination. The genes carried by any particular plasmid may be found in only a few individuals of any species but can also be shared with other species and thus constitute a horizontal gene pool. This book explains the various contributions that plasmids make to this pool: the replication, stable inheritance and transfer modules, the phenotypic markers they carry, the way they evolve, the ways they contribute to their host population and the approaches that we use to study and classify them. It also looks at what we know about their activity in natural communities and the way that they interact with other mobile elements to promote bacterial evolution.




Type IV Secretion in Gram-Negative and Gram-Positive Bacteria


Book Description

Type IV secretion systems (T4SSs) are highly versatile membrane-associated transporter machines used by Gram-negative and Gram-positive bacteria to deliver substrate molecules to a large variety of target cells. This volume summarizes our current knowledge of the large variety and structural diversity of T4SSs in pathogenic Escherichia, Agrobacterium, Legionella, Coxiella, Bartonella, Helicobacter, Enterococcus and other species. Divided into 13 chapters contributed by leading experts, it presents findings that significantly enhance our understanding of how various pathogens manipulate host cell functions to trigger bacterial uptake, promote intracellular growth, suppress defense mechanisms and of how bacteria spread antibiotic resistances, thus facilitating bacterial colonization and disease development. The book is an invaluable source of information for researchers and clinicians.




Antimicrobial Resistance


Book Description

Summary report published as technical document with reference number: WHO/HSE/PED/AIP/2014.2.




Computational Methods for Understanding Bacterial and Archaeal Genomes


Book Description

Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.




Molecular Life Sciences


Book Description

Molecular Life Sciences: An Encyclopedic Reference will focus on understanding biological phenomena at the level of molecules and their interactions that govern life processes. The work will include articles on genes and genomes, protein structure and function, systems biology using genomics and proteomics as the focus, molecular aspects of cell structure and function, unifying concepts and theories from biology, chemistry, mathematics and physics that are essential for understanding the molecular life sciences (including teaching perspectives and assessment tools), and basic aspects of the various experimental approaches that are used in the Molecular Life Sciences.