Fundamentals of Inorganic Glasses


Book Description

Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study




Basic Features Of The Glassy State - Proceedings Of The Second International Workshop On Non-crystalline Solids


Book Description

This proceedings cover the basic aspects and technical applications of non-crystalline solids from experts in different fields like polymer science, metallic glasses, basic properties, technological applications etc.




Development History Of Ancient Chinese Glass Technology


Book Description

Worldwide research on ancient glass began in the early 20th century. A consensus has been reached in the community of Archaeology that the first manmade or synthetic glasses, based on archaeological findings, originated in the Middle East during the 5000-3000's BC. By contrast, the manufacturing technology of pottery and ceramics were well developed in ancient China. The earliest pottery and ceramics dates back to the Shang Dynasty - the Zhou Dynasty (1700 BC-770 BC), while the earliest ancient glass artifacts unearthed in China dates back to the Western Han Dynasty. Utilizing the state-of-the art analytical and spectroscopic methods, the recent findings demonstrate that China had already developed its own glassmaking technology at latest since 200 BC. There are two schools of viewpoint on the origin of ancient Chinese glass. The more common one believes that ancient Chinese glass originated from the import of glassmaking technology from the West as a result of Sino-West trade exchanges in the Western Han Dynasty (206 BC-25 AD). The other scientifically demonstrates that homemade ancient Chinese glass with unique domestic formula containing both PbO and BaO were made as early as in the Pre-Qin Period or even the Warring States Period (770 BC-221 BC), known as Yousha or Faience.This English version of the previously published Chinese book entitled Development History of Ancient Chinese Glass Technology is for universities and research institutes where various research and educational activities of ancient glass and history are conducted. With 18 chapters, the scope of this book covers very detailed information on scientifically based findings of ancient Chinese glass development and imports and influence of foreign glass products as well as influence of the foreign glass manufacturing processes through the trade exchanges along the Silk Road(s).




Glass Nanocomposites


Book Description

Glass Nanocomposites: Synthesis, Properties and Applications provides the latest information on a rapidly growing field of specialized materials, bringing light to new research findings that include a growing number of technologies and applications. With this growth, a new need for deep understanding of the synthesis methods, composite structure, processing and application of glass nanocomposites has emerged. In the book, world renowned experts in the field, Professors Karmakar, Rademann, and Stepanov, fill the knowledge gap, building a bridge between the areas of nanoscience, photonics, and glass technology. The book covers the fundamentals, synthesis, processing, material properties, structure property correlation, interpretation thereof, characterization, and a wide range of applications of glass nanocomposites in many different devices and branches of technology. Recent developments and future directions of all types of glass nanocomposites, such as metal-glasses (e.g., metal nanowire composites, nanoglass-mesoporous silica composites), semiconductor-glass and ceramic-glass nanocomposites, as well as oxide and non-oxide glasses, are also covered in great depth. Each chapter is logically structured in order to increase coherence, with each including question sets as exercises for a deeper understanding of the text. - Provides comprehensive and up-to-date knowledge and literature review for both the oxide and non-oxide glass nanocomposites (i.e., practically all types of glass nanocomposites) - Reviews a wide range of synthesis types, properties, characterization, and applications of diverse types of glass nanocomposites - Presents future directions of glass nanocomposites for researchers and engineers, as well as question sets for use in university courses




Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set


Book Description

This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.




The Glass Transition


Book Description

Describes and interrelates the following processes: cooperative alpha processes in a cold liquid, structural relaxation in the glass near Tg, the Johari-Goldstein beta process, the Williams-Götze process in a warm liquid, fast nonactivated cage rattling and boson peak, and ultraslow Fischer modes.




Structural Chemistry of Glasses


Book Description

Structural Chemistry of Glasses provides detailed coverage of the subject for students and professionals involved in the physical chemistry aspects of glass research. Starting with the historical background and importance of glasses, it follows on with methods of preparation, structural and bonding theories, and criteria for glass formation including new approaches such as the constraint model. Glass transition is considered, as well as the wide range of theoretical approaches that are used to understand this phenomenon. The author provides a detailed discussion of Boson peaks, FSDP, Polymorphism, fragility, structural techniques, and theoretical modelling methods such as Monte Carlo and Molecular Dynamics simulation. The book covers ion and electron transport in glasses, mixed-alkali effect, fast ion conduction, power law and scaling behaviour, electron localization, charged defects, photo-structural effects, elastic properties, pressure-induced transitions, switching behaviour, colour, and optical properties of glasses. Special features of a variety of oxide, chalcogenide, halide, oxy-nitride and metallic gasses are discussed. With over 140 sections, this book captures most of the important and topical aspects of glass science, and will be useful for both newcomers to the subject and the experienced practitioner.




Bulk Metallic Glasses


Book Description

Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.




Glassy Materials and Disordered Solids


Book Description

This book gives a pedagogical introduction to the physics of amorphous solids and related disordered condensed matter systems. Important concepts from statistical mechanics such as percolation, random walks, fractals and spin glasses are explained. Using these concepts, the common aspects of these systems are emphasized, and the current understanding of the glass transition and the structure of glasses are concisely reviewed. This second edition includes new material on emerging topics in the field of disordered systems such as gels, driven systems, dynamical heterogeneities, growing length scales etc. as well as an update of the literature in this rapidly developing field.




Introduction to Glass Science and Technology


Book Description

This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.