Basic Statistics and Pharmaceutical Statistical Applications, Third Edition


Book Description

Building on its best-selling predecessors, Basic Statistics and Pharmaceutical Statistical Applications, Third Edition covers statistical topics most relevant to those in the pharmaceutical industry and pharmacy practice. It focuses on the fundamentals required to understand descriptive and inferential statistics for problem solving. Incorporating new material in virtually every chapter, this third edition now provides information on software applications to assist with evaluating data. New to the Third Edition Use of Excel® and Minitab® for performing statistical analysis Discussions of nonprobability sampling procedures, determining if data is normally distributed, evaluation of covariances, and testing for precision equivalence Expanded sections on regression analysis, chi square tests, tests for trends with ordinal data, and tests related to survival statistics Additional nonparametric procedures, including the one-sided sign test, Wilcoxon signed-ranks test, and Mood’s median test With the help of flow charts and tables, the author dispels some of the anxiety associated with using basic statistical tests in the pharmacy profession and helps readers correctly interpret their results using statistical software. Through the text’s worked-out examples, readers better understand how the mathematics works, the logic behind many of the equations, and the tests’ outcomes.




Basic Statistics and Pharmaceutical Statistical Applications, Second Edition


Book Description

The first edition of Basic Statistics and Pharmaceutical Statistical Applications successfully provided a practical, easy-to-read, basic statistics book. This second edition not only updates the previous edition, but expands coverage in the area of biostatistics and how it relates to real-world professional practice. Taking you on a roller coaster ride through the world of statistics, Dr. De Muth clearly details the methodology necessary to summarize data and make informed decisions about observed outcomes. What's new or different in the Second Edition? New chapters cover: Measures of association primarily with nominal and ordinal data and and more than 15 tests Survival statistics including actuarial analysis and an introduction to multiple regression with survival data using proportional hazards regression An introduction to the topic of evidence-based practice with discussions of sensitivity and specificity, predictive values, and likelihood ratios Odds ratios and relative risk ratios that provide valuable information for dealing with probability, odds, and risk New sections address Power and sample size determination for two-sample Z-tests of proportions Clinical equivalence and noninferiority studies, process capability, and tolerance limits Methods for assessing repeatability and reproducibility Expanded information includes: Chi square, repeated measures designs, Latin Square designs, nine multiple comparison tests, and outlier testing Inverse prediction with linear regression, handling of multiple data points at different levels of independent variable, and assessment of parallelism of slopes for two samples Additional types of bivariate correlations and various assessments for independence and randomness More nonparametric tests including new information on post hoc comparisons for a significant Kruskal-Wallis test, the Kolmogorov-Smirnov goodness-of-fit test, and the Anderson-Darling test, as well as runs and range tests Eight new tables useful for the interpretation of some of the new inferential statistics De Muth provides concrete examples that enable you to effectively manage information in your day-to-day problem solving and reporting of findings. By avoiding heavy-duty mathematics and theory, even the mathematically challenged can benefit and increase their confidence in using statistics procedures.




Basic Statistics and Pharmaceutical Statistical Applications


Book Description

Building on its best-selling predecessors, Basic Statistics and Pharmaceutical Statistical Applications, Third Edition covers statistical topics most relevant to those in the pharmaceutical industry and pharmacy practice. It focuses on the fundamentals required to understand descriptive and inferential statistics for problem solving. Incorporating




Practical Statistics for Pharmaceutical Analysis


Book Description

This is an introductory statistics book designed to provide scientists with practical information needed to apply the most common statistical tests to laboratory research data. The book is designed to be practical and applicable, so only minimal information is devoted to theory or equations. Emphasis is placed on the underlying principles for effective data analysis and survey the statistical tests. It is of special value for scientists who have access to Minitab software. Examples are provides for all the statistical tests and explanation of the interpretation of these results presented with Minitab (similar to results for any common software package). The book is specifically designed to contribute to the AAPS series on advances in the pharmaceutical sciences. It benefits professional scientists or graduate students who have not had a formal statistics class, who had bad experiences in such classes, or who just fear/don’t understand statistics. Chapter 1 focuses on terminology and essential elements of statistical testing. Statistics is often complicated by synonyms and this chapter established the terms used in the book and how rudiments interact to create statistical tests. Chapter 2 discussed descriptive statistics that are used to organize and summarize sample results. Chapter 3 discussed basic assumptions of probability, characteristics of a normal distribution, alternative approaches for non-normal distributions and introduces the topic of making inferences about a larger population based on a small sample from that population. Chapter 4 discussed hypothesis testing where computer output is interpreted and decisions are made regarding statistical significance. This chapter also deasl with the determination of appropriate sample sizes. The next three chapters focus on tests that make decisions about a population base on a small subset of information. Chapter 5 looks at statistical tests that evaluate where a significant difference exists. In Chapter 6 the tests try to determine the extent and importance of relationships. In contrast to fifth chapter, Chapter 7 presents tests that evaluate the equivalence, not the difference between levels being tested. The last chapter deals with potential outlier or aberrant values and how to statistically determine if they should be removed from the sample data. Each statistical test presented includes an example problem with the resultant software output and how to interpret the results. Minimal time is spent on the mathematical calculations or theory. For those interested in the associated equations, supplemental figures are presented for each test with respective formulas. In addition, Appendix D presents the equations and proof for every output result for the various examples. Examples and results from the appropriate statistical results are displayed using Minitab 18Ò. In addition to the results, the required steps to analyze data using Minitab are presented with the examples for those having access to this software. Numerous other software packages are available, including based data analysis with Excel.







Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry


Book Description

This book examines statistical techniques that are critically important to Chemistry, Manufacturing, and Control (CMC) activities. Statistical methods are presented with a focus on applications unique to the CMC in the pharmaceutical industry. The target audience consists of statisticians and other scientists who are responsible for performing statistical analyses within a CMC environment. Basic statistical concepts are addressed in Chapter 2 followed by applications to specific topics related to development and manufacturing. The mathematical level assumes an elementary understanding of statistical methods. The ability to use Excel or statistical packages such as Minitab, JMP, SAS, or R will provide more value to the reader. The motivation for this book came from an American Association of Pharmaceutical Scientists (AAPS) short course on statistical methods applied to CMC applications presented by four of the authors. One of the course participants asked us for a good reference book, and the only book recommended was written over 20 years ago by Chow and Liu (1995). We agreed that a more recent book would serve a need in our industry. Since we began this project, an edited book has been published on the same topic by Zhang (2016). The chapters in Zhang discuss statistical methods for CMC as well as drug discovery and nonclinical development. We believe our book complements Zhang by providing more detailed statistical analyses and examples.




Applied Statistics in the Pharmaceutical Industry


Book Description

Providing a general guide to statistical methods used in the pharmaceutical industry, and illustrating how to use S-PLUS to implement these methods, the book explains why S-PLUS is a useful software package and discusses the results and implications of each particular application. It is targeted at graduates in biostatistics, statisticians involved in the industry as research scientists, regulators, academics, and/or consultants who want to know more about how to use S-PLUS and learn about other sub-fields within the industry, as well as statisticians in other fields who want to know more about statistical applications in the pharmaceutical industry.




Basic Statistics and Pharmaceutical Statistical Applications


Book Description

This extremely pragmatic and accessible reference provides scientists with a basic knowledge of statistics-focusing on the practical applications of statistical methods to research, quality control, and data analysis. Basic Statistics and Pharmaceutical Statistical Applications explores types of variables, random sampling, probability, measures of central tendency, and hypothesis (or significance) testing, discusses regression analysis, nonparametric tests, and power determination, and examines study designs, confidence intervals, dissolution testing, and bioequivalence. The author also describes the interrelation of hypotheses, test statistics, decision rules, computations, and statistical decisions and addresses testing factors such as precision, accuracy, bias, sensitivity, and selectivity Featuring almost 500 equations, tables, drawings, and references, Basic Statistics and Pharmaceutical Statistical Applications is required reading for pharmacists, analytical chemists, clinical trial monitors, medical writers, and upper-level undergraduate and graduate students in these disciplines.




Essential Statistics for the Pharmaceutical Sciences


Book Description

Essential Statistics for the Pharmaceutical Sciences is targeted at all those involved in research in pharmacology, pharmacy or other areas of pharmaceutical science; everybody from undergraduate project students to experienced researchers should find the material they need. This book will guide all those who are not specialist statisticians in using sound statistical principles throughout the whole journey of a research project - designing the work, selecting appropriate statistical methodology and correctly interpreting the results. It deliberately avoids detailed calculation methodology. Its key features are friendliness and clarity. All methods are illustrated with realistic examples from within pharmaceutical science. This edition now includes expanded coverage of some of the topics included in the first edition and adds some new topics relevant to pharmaceutical research. a clear, accessible introduction to the key statistical techniques used within the pharmaceutical sciences all examples set in relevant pharmaceutical contexts. key points emphasised in summary boxes and warnings of potential abuses in ‘pirate boxes’. supplementary material - full data sets and detailed instructions for carrying out analyses using packages such as SPSS or Minitab – provided at: https://www.wiley.com/go/rowe/statspharmascience2e An invaluable introduction to statistics for any science student and an essential text for all those involved in pharmaceutical research at whatever level.




Pharmaceutical Statistics Using SAS


Book Description

Introduces a range of data analysis problems encountered in drug development and illustrates them using case studies from actual pre-clinical experiments and clinical studies. Includes a discussion of methodological issues, practical advice from subject matter experts, and review of relevant regulatory guidelines.