Semiconductor Devices


Book Description

Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.







Principles of Transistor Circuits


Book Description

For over thirty years, Stan Amos has provided students and practitioners with a text they could rely on to keep them at the forefront of transistor circuit design. This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switch-mode power supplies.Although integrated circuits have widespread application, the role of discrete transistors is undiminished, both as important building blocks which students must understand and as practical solutions to design problems, especially where appreciable power output or high voltage is required. New circuit techniques covered for the first time in this edition include current-dumping amplifiers, bridge output stages, dielectric resonator oscillators, crowbar protection circuits, thyristor field timebases, low-noise blocks and SHF amplifiers in satellite receivers, video clamps, picture enhancement circuits, motor drive circuits in video recorders and camcorders, and UHF modulators. The plan of the book remains the same: semiconductor physics is introduced, followed by details of the design of transistors, amplifiers, receivers, oscillators and generators. Appendices provide information on transistor manufacture and parameters, and a new appendix on transistor letter symbols has been included.




Makers of the Microchip


Book Description

The first years of the company that developed the microchip and created the model for a successful Silicon Valley start-up. In the first three and a half years of its existence, Fairchild Semiconductor developed, produced, and marketed the device that would become the fundamental building block of the digital world: the microchip. Founded in 1957 by eight former employees of the Schockley Semiconductor Laboratory, Fairchild created the model for a successful Silicon Valley start-up: intense activity with a common goal, close collaboration, and a quick path to the market (Fairchild's first device hit the market just ten months after the company's founding). Fairchild Semiconductor was one of the first companies financed by venture capital, and its success inspired the establishment of venture capital firms in the San Francisco Bay area. These firms would finance the explosive growth of Silicon Valley over the next several decades. This history of the early years of Fairchild Semiconductor examines the technological, business, and social dynamics behind its innovative products. The centerpiece of the book is a collection of documents, reproduced in facsimile, including the company's first prospectus; ideas, sketches, and plans for the company's products; and a notebook kept by cofounder Jay Last that records problems, schedules, and tasks discussed at weekly meetings. A historical overview, interpretive essays, and an introduction to semiconductor technology in the period accompany these primary documents.







Different Types of Field-Effect Transistors


Book Description

In 1959, Atalla and Kahng at Bell Labs produced the first successful field-effect transistor (FET), which had been long anticipated by other researchers by overcoming the "surface states" that blocked electric fields from penetrating into the semiconductor material. Very quickly, they became the fundamental basis of digital electronic circuits. Up to this point, there are more than 20 different types of field-effect transistors that are incorporated in various applications found in everyday's life. Based on this fact, this book was designed to overview some of the concepts regarding FETs that are currently used as well as some concepts that are still being developed.










Technical Manual


Book Description