Basic Tutorial on Simulation of Microgrids Control Using MATLAB® & Simulink® Software


Book Description

This book offers a detailed guide to the design and simulation of basic control methods applied to microgrids in various operating modes, using MATLAB® Simulink® software. It includes discussions on the performance of each configuration, as well as the advantages and limitations of the droop control method. The content is organised didactically, with a level of mathematical and scientific rigour suitable for undergraduate and graduate programmes, as well as for industry professionals. The use of MATLAB® Simulink® software facilitates the learning process with regard to modelling and simulating power electronic converters at the interface of distributed energy resource (DER) systems. The book also features a wealth of illustrations, schematics, and simulation results. Given its scope, it will greatly benefit undergraduate and graduate students in the fields of electrical and electronics engineering, as well as professionals working in microgrid design and implementation.




Basic Tutorial on Simulation of Microgrids Control Using MATLAB® and Simulink® Software


Book Description

This book offers a detailed guide to the design and simulation of basic control methods applied to microgrids in various operating modes, using MATLAB® Simulink® software. It includes discussions on the performance of each configuration, as well as the advantages and limitations of the droop control method. The content is organised didactically, with a level of mathematical and scientific rigour suitable for undergraduate and graduate programmes, as well as for industry professionals. The use of MATLAB® Simulink® software facilitates the learning process with regard to modelling and simulating power electronic converters at the interface of distributed energy resource (DER) systems. The book also features a wealth of illustrations, schematics, and simulation results. Given its scope, it will greatly benefit undergraduate and graduate students in the fields of electrical and electronics engineering, as well as professionals working in microgrid design and implementation.




Control Applications in Modern Power Systems


Book Description

The volume contains peer-reviewed proceedings of EPREC 2021 with a focus on control applications in the modern power system. The book includes original research and case studies that present recent developments in the control system, especially load frequency control, wide-area monitoring, control & instrumentation, optimization, intelligent control, energy management system, SCADA systems, etc. The book will be a valuable reference guide for beginners, researchers, and professionals interested in advancements in the control system.




Smart Microgrids


Book Description

This book addresses the need to understand the development, use, construction, and operation of smart microgrids (SMG). Covering selected major operations of SMG like dynamic energy management, demand response, and demand dispatch, it describes the design and operational challenges of different microgrids and provides feasible solutions for systems. Smart Micro Grid presents communication technologies and governing standards used in developing communication networks for realizing various smart services and applications in microgrids. An architecture facilitating bidirectional communication for smart distribution/microgrid is brought out covering aspects of its design, development and validation. The book is aimed at graduate, research students and professionals in power, power systems, and power electronics. Features: • Covers a broad overview of the benefits, the design and operation requirements, standards and communication requirements for deploying microgrids in distribution systems. • Explores issues related to planning, expansion, operation, type of microgrids, interaction among microgrid and distribution networks, demand response, and the technical requirements for the communication network. • Discusses current standards and common practices to develop and operate microgrids. • Describes technical issues and requirements for operating microgrids. • Illustrates smart communication architecture and protocols.




Virtual Inertia Synthesis and Control


Book Description

This book provides a thorough understanding of the basic principles, synthesis, analysis, and control of virtual inertia systems. It uses the latest technical tools to mitigate power system stability and control problems under the presence of high distributed generators (DGs) and renewable energy sources (RESs) penetration. This book uses a simple virtual inertia control structure based on the frequency response model, complemented with various control methods and algorithms to achieve an adaptive virtual inertia control respect to the frequency stability and control issues. The chapters capture the important aspects in virtual inertia synthesis and control with the objective of solving the stability and control problems regarding the changes of system inertia caused by the integration of DGs/RESs. Different topics on the synthesis and application of virtual inertia are thoroughly covered with the description and analysis of numerous conventional and modern control methods for enhancing the full spectrum of power system stability and control. Filled with illustrative examples, this book gives the necessary fundamentals and insight into practical aspects. This book stimulates further research and offers practical solutions to real-world power system stability and control problems with respect to the system inertia variation triggered by the integration of RESs/DGs. It will be of use to engineers, academic researchers, and university students interested in power systems dynamics, analysis, stability and control.




Multiagent System Technologies


Book Description

This book constitutes the refereed proceedings of the 11th German Conference on Multiagent System Technologies, MATES 2013, held in Koblenz, Germany, in September 2013. The 29 revised full papers and 3 keynote talks presented were carefully reviewed and selected from various submissions. The papers cover a broad area of topics of interest ranging from issues of agent-based coordination to simulation to negotiation.




Software Defined Radio Using MATLAB & Simulink and the RTL-SDR


Book Description

The availability of the RTL-SDR device for less than $20 brings software defined radio (SDR) to the home and work desktops of EE students, professional engineers and the maker community. The RTL-SDR can be used to acquire and sample RF (radio frequency) signals transmitted in the frequency range 25MHz to 1.75GHz, and the MATLAB and Simulink environment can be used to develop receivers using first principles DSP (digital signal processing) algorithms. Signals that the RTL-SDR hardware can receive include: FM radio, UHF band signals, ISM signals, GSM, 3G and LTE mobile radio, GPS and satellite signals, and any that the reader can (legally) transmit of course! In this book we introduce readers to SDR methods by viewing and analysing downconverted RF signals in the time and frequency domains, and then provide extensive DSP enabled SDR design exercises which the reader can learn from. The hands-on SDR design examples begin with simple AM and FM receivers, and move on to the more challenging aspects of PHY layer DSP, where receive filter chains, real-time channelisers, and advanced concepts such as carrier synchronisers, digital PLL designs and QPSK timing and phase synchronisers are implemented. In the book we will also show how the RTL-SDR can be used with SDR transmitters to develop complete communication systems, capable of transmitting payloads such as simple text strings, images and audio across the lab desktop.




Model Predictive Control of Microgrids


Book Description

The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory


Book Description

This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.




Practical Design and Application of Model Predictive Control


Book Description

Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. - Illustrates how to design, tune and deploy MPC for projects in a quick manner - Demonstrates a variety of applications that are solved using MATLAB® and Simulink® - Bridges the gap in providing a number of realistic problems with very hands-on training - Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work - Presents application problems with solutions to help reinforce the information learned




Recent Books