The Theory That Would Not Die


Book Description

"This account of how a once reviled theory, Baye’s rule, came to underpin modern life is both approachable and engrossing" (Sunday Times). A New York Times Book Review Editors’ Choice Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the generations-long human drama surrounding it. McGrayne traces the rule’s discovery by an 18th century amateur mathematician through its development by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—while practitioners relied on it to solve crises involving great uncertainty and scanty information, such as Alan Turing's work breaking Germany's Enigma code during World War II. McGrayne also explains how the advent of computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security. Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.




Think Bayes


Book Description

If you know how to program with Python, and know a little about probability, you're ready to tackle Bayesian statistics. This book shows you how to use Python code instead of math to help you learn Bayesian fundamentals. Once you get the math out of the way, you'll be able to apply these techniques to real-world problems.




Bayes' Rule


Book Description

In this richly illustrated book, a range of accessible examples are used to show how Bayes' rule is actually a natural consequence of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for the novice who wishes to become familiar with the basic principles of Bayesian analysis.




Bayes' Theorem Examples


Book Description

***** #1 Kindle Store Bestseller in Mathematics (Throughout 2016) ********** #1 Kindle Store Bestseller in Education Theory (Throughout 2017) *****If you are looking for a short beginners guide packed with visual examples, this book is for you. Bayes' Theorem Examples: A Beginners Visual Approach to Bayesian Data Analysis If you've recently used Google search to find something, Bayes' Theorem was used to find your search results. The same is true for those recommendations on Netflix. Hedge funds? Self-driving cars? Search and Rescue? Bayes' Theorem is used in all of the above and more. At its core, Bayes' Theorem is a simple probability and statistics formula that has revolutionized how we understand and deal with uncertainty. If life is seen as black and white, Bayes' Theorem helps us think about the gray areas. When new evidence comes our way, it helps us update our beliefs and create a new belief.Ready to dig in and visually explore Bayes' Theorem? Let's go! Over 60 hand-drawn visuals are included throughout the book to help you work through each problem as you learn by example. The beautifully hand-drawn visual illustrations are specifically designed and formatted for the kindle.This book also includes sections not found in other books on Bayes' Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). - For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios. A few examples of how to think like a Bayesian in everyday life. Bayes' Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. Learn how Bayes can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes' Rule. - Bayes' Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700's to its being used to break the German's Enigma Code during World War 2. Fascinating real-life stories on how Bayes' formula is used everyday.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. An expanded Bayes' Theorem definition, including notations, and proof section. - In this section we define core elementary bayesian statistics terms more concretely. A recommended readings sectionFrom The Theory That Would Not Die to Think Bayes: Bayesian Statistics in Pythoni> and many more, there are a number of fantastic resources we have collected for further reading. If you are a visual learner and like to learn by example, this intuitive Bayes' Theorem 'for dummies' type book is a good fit for you. Praise for Bayes' Theorem Examples "...What Morris has presented is a useful way to provide the reader with a basic understanding of how to apply the theorem. He takes it easy step by easy step and explains matters in a way that almost anyone can understand. Moreover, by using Venn Diagrams and other visuals, he gives the reader multiple ways of understanding exactly what is going on in Bayes' theorem. The way in which he presents this material helps solidify in the reader's mind how to use Bayes' theorem..." - Doug E. - TOP 100 REVIEWER"...For those who are predominately "Visual Learners", as I certainly am, I highly recommend this book...I believe I gained more from this book than I did from college statistics. Or at least, one fantastic refresher after 20 some years after the fact." - Tin F. TOP 50 REVIEWER




Bayesian Probability for Babies


Book Description

Fans of Chris Ferrie's Rocket Science for Babies, Astrophysics for Babies, and 8 Little Planets will love this introduction to the basic principles of probability for babies and toddlers! Help your future genius become the smartest baby in the room! It only takes a small spark to ignite a child's mind. If you took a bite out of a cookie and that bite has no candy in it, what is the probability that bite came from a candy cookie or a cookie with no candy? You and baby will find out the probability and discover it through different types of distribution. Yet another Baby University board book full of simple explanations of complex ideas written by an expert for your future genius! If you're looking for baby math books, probability for kids, or more Baby University board books to surprise your little one, look no further! Bayesian Probability for Babies offers fun early learning for your little scientist!




Bayesian Statistics the Fun Way


Book Description

Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.




Proving History


Book Description

This in-depth discussion of New Testament scholarship and the challenges of history as a whole proposes Bayes’s Theorem, which deals with probabilities under conditions of uncertainty, as a solution to the problem of establishing reliable historical criteria. The author demonstrates that valid historical methods—not only in the study of Christian origins but in any historical study—can be described by, and reduced to, the logic of Bayes’s Theorem. Conversely, he argues that any method that cannot be reduced to this theorem is invalid and should be abandoned. Writing with thoroughness and clarity, the author explains Bayes’s Theorem in terms that are easily understandable to professional historians and laypeople alike, employing nothing more than well-known primary school math. He then explores precisely how the theorem can be applied to history and addresses numerous challenges to and criticisms of its use in testing or justifying the conclusions that historians make about the important persons and events of the past. The traditional and established methods of historians are analyzed using the theorem, as well as all the major "historicity criteria" employed in the latest quest to establish the historicity of Jesus. The author demonstrates not only the deficiencies of these approaches but also ways to rehabilitate them using Bayes’s Theorem. Anyone with an interest in historical methods, how historical knowledge can be justified, new applications of Bayes’s Theorem, or the study of the historical Jesus will find this book to be essential reading.




Rational Descriptions, Decisions and Designs


Book Description

Rational Descriptions, Decisions and Designs is a reference for understanding the aspects of rational decision theory in terms of the basic formalism of information theory. The text provides ways to achieve correct engineering design decisions. The book starts with an understanding for the need to apply rationality, as opposed to uncertainty, in design decision making. Inductive logic in computers is explained where the design of the machine and the accompanying software are considered. The text then explains the functional equations and the problems of arriving at a rational description through some mathematical preliminaries. Bayes' equation and rational inference as tools for adjusting probabilities when something new is encountered in earlier probability distributions are explained. The book presents as well a case study concerning the error made in following specifications of spark plugs. The author also explains the Bernoulli trials, where a probability that a better hypothesis than that already adopted may exist. The rational measure of uncertainty and the principle of maximum entropy with sample calculations are included in the text. After considering the probabilities, the decision theory is taken up where engineering design follows. Examples regarding transmitter and voltmeter designs are presented. The book ends by explaining probabilities of success and failure as applied to reliability engineering, that it is a state of knowledge rather than the state of a thing. The text can serve as a textbook for students in technology engineering and design, and as a useful reference for mathematicians, statisticians, and fabrication engineers.




Bayes Rules!


Book Description

Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.




Data Science Algorithms in a Week


Book Description

Build a strong foundation of machine learning algorithms in 7 days Key FeaturesUse Python and its wide array of machine learning libraries to build predictive models Learn the basics of the 7 most widely used machine learning algorithms within a weekKnow when and where to apply data science algorithms using this guideBook Description Machine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well. Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis. By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem What you will learnUnderstand how to identify a data science problem correctlyImplement well-known machine learning algorithms efficiently using PythonClassify your datasets using Naive Bayes, decision trees, and random forest with accuracyDevise an appropriate prediction solution using regressionWork with time series data to identify relevant data events and trendsCluster your data using the k-means algorithmWho this book is for This book is for aspiring data science professionals who are familiar with Python and have a little background in statistics. You’ll also find this book useful if you’re currently working with data science algorithms in some capacity and want to expand your skill set