Benchmark Models of Control System Design for Remotely Operated Vehicles


Book Description

This book is intended to meet the needs of those who seek to develop control systems for ROVs when there is no model available during the initial design stage. The modeling, simulation and application of marine vehicles like underwater robotic vehicles (URVs) are multidisciplinary, and combine mathematical aspects from various engineering disciplines. URVs such as remotely operated vehicle (ROVs) are used for a wide range of applications such as exploring the extreme depths of our ocean, where a hard-wired link is still required. Most ROVs operate in extreme environments with uncertainties in the model prior to control system design. However, the method involved extensive testing before the system model could be used for any control actions. It has been found that the range of error can be extensive and uncertain in actual, continuously varying conditions. Hence, it is important to address the problem of reliance on model testing using different modeling approaches. In this book, approaches such as WAMIT, ANSYS-CFX, STAR CCM+, MATLAB and Simulink are used to model parameters for ROVs. A few benchmark models are provided, allowing researchers and students to explore and test different control schemes. Given its scope, the book offers a valuable reference guide for postgraduate and undergraduate students engaged in modeling and simulation for ROV control.



















Innovations in Data Analytics


Book Description

This book features research papers presented at the 1st International Conference on Innovations in Data Analytics (ICIDA 2022), held at Eminent College of Management and Technology (ECMT), West Bengal, India, during November 29–30, 2022. The book presents original research work in the areas of computational intelligence, advance computing, network security and telecommunication, data science and data analytics, and pattern recognition. The book is beneficial for readers from both academia and industry.




Deterministic Artificial Intelligence


Book Description

Kirchhoff’s laws give a mathematical description of electromechanics. Similarly, translational motion mechanics obey Newton’s laws, while rotational motion mechanics comply with Euler’s moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research culminating here with a text on the ability to make rigid bodies in rotation become self-aware, and even learn. This book is meant for basic scientifically inclined readers commencing with a first chapter on the basics of stochastic artificial intelligence to bridge readers to very advanced topics of deterministic artificial intelligence, espoused in the book with applications to both electromechanics (e.g. the forced van der Pol equation) and also motion mechanics (i.e. Euler’s moment equations). The reader will learn how to bestow self-awareness and express optimal learning methods for the self-aware object (e.g. robot) that require no tuning and no interaction with humans for autonomous operation. The topics learned from reading this text will prepare students and faculty to investigate interesting problems of mechanics. It is the fondest hope of the editor and authors that readers enjoy the book.







Digital Image Enhancement and Reconstruction


Book Description

Digital Image Enhancement and Reconstruction: Techniques and Applications explores different concepts and techniques used for the enhancement as well as reconstruction of low-quality images. Most real-life applications require good quality images to gain maximum performance, however, the quality of the images captured in real-world scenarios is often very unsatisfactory. Most commonly, images are noisy, blurry, hazy, tiny, and hence need to pass through image enhancement and/or reconstruction algorithms before they can be processed by image analysis applications. This book comprehensively explores application-specific enhancement and reconstruction techniques including satellite image enhancement, face hallucination, low-resolution face recognition, medical image enhancement and reconstruction, reconstruction of underwater images, text image enhancement, biometrics, etc. Chapters will present a detailed discussion of the challenges faced in handling each particular kind of image, analysis of the best available solutions, and an exploration of applications and future directions. The book provides readers with a deep dive into denoising, dehazing, super-resolution, and use of soft computing across a range of engineering applications. Presents comprehensive coverage of digital image enhancement and reconstruction techniques Explores applications across range of fields, including intelligent surveillance systems, human-computer interaction, healthcare, agriculture, biometrics, modelling Explores different challenges and issues related to the implementation of various techniques for different types of images, including denoising, dehazing, super-resolution, and use of soft computing