Benefiting from Thermal and Mechanical Simulation in Micro-Electronics


Book Description

Benefiting from Thermal and Mechanical Simulation in Micro-Electronics presents papers from the first international conference on this topic, EuroSimE2000. For the first time, people from the electronics industry, research institutes, software companies and universities joined together to discuss present and possible future thermal and mechanical related problems and challenges in micro-electronics; the state-of-the-art methodologies for thermal & mechanical simulation and optimization of micro-electronics; and the perspectives of future simulation and optimization methodology development. Main areas covered are:- LIST type="5" The impact of simulation on industry profitability Approaches to simulation The state-of-the-art methodologies of simulation Design optimization by simulation £/LIST£ Benefiting from Thermal and Mechanical Simulation in Micro-Electronics is suitable for students at graduate level and beyond, and for researchers, designers and specialists in the fields of microelectronics and mechanics.







Mechanics of Microelectronics


Book Description

This book is written by leading experts with both profound knowledge and rich practical experience in advanced mechanics and the microelectronics industry essential for current and future development. It aims to provide the cutting edge knowledge and solutions for various mechanical related problems, in a systematic way. It contains important and detailed information about the state-of-the-art theories, methodologies, the way of working and real case studies.




Modeling and Simulation for Microelectronic Packaging Assembly


Book Description

Although there is increasing need for modeling and simulation in the IC package design phase, most assembly processes and various reliability tests are still based on the time consuming "test and try out" method to obtain the best solution. Modeling and simulation can easily ensure virtual Design of Experiments (DoE) to achieve the optimal solution. This has greatly reduced the cost and production time, especially for new product development. Using modeling and simulation will become increasingly necessary for future advances in 3D package development. In this book, Liu and Liu allow people in the area to learn the basic and advanced modeling and simulation skills to help solve problems they encounter. Models and simulates numerous processes in manufacturing, reliability and testing for the first time Provides the skills necessary for virtual prototyping and virtual reliability qualification and testing Demonstrates concurrent engineering and co-design approaches for advanced engineering design of microelectronic products Covers packaging and assembly for typical ICs, optoelectronics, MEMS, 2D/3D SiP, and nano interconnects Appendix and color images available for download from the book's companion website Liu and Liu have optimized the book for practicing engineers, researchers, and post-graduates in microelectronic packaging and interconnection design, assembly manufacturing, electronic reliability/quality, and semiconductor materials. Product managers, application engineers, sales and marketing staff, who need to explain to customers how the assembly manufacturing, reliability and testing will impact their products, will also find this book a critical resource. Appendix and color version of selected figures can be found at www.wiley.com/go/liu/packaging




Reliability of Organic Compounds in Microelectronics and Optoelectronics


Book Description

This book aims to provide a comprehensive reference into the critical subject of failure and degradation in organic materials, used in optoelectronics and microelectronics systems and devices. Readers in different industrial sectors, including microelectronics, automotive, lighting, oil/gas, and petrochemical will benefit from this book. Several case studies and examples are discussed, which readers will find useful to assess and mitigate similar failure cases. More importantly, this book presents methodologies and useful approaches in analyzing a failure and in relating a failure to the reliability of materials and systems.




Structural Dynamics of Electronic and Photonic Systems


Book Description

The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.) In-depth discussion from a mechanical engineer's viewpoint will be conducted to the key components’ level as well as the whole device level. Both theoretical (analytical and computer-aided) and experimental methods of analysis will be addressed. The authors will identify how the failure control parameters (e.g. displacement, strain and stress) of the vulnerable components may be affected by the external vibration or shock loading, as well as by the internal parameters of the infrastructure of the device. Guidelines for material selection, effective protection and test methods will be developed for engineering practice.




Physical Assurance


Book Description

This book provides readers with a comprehensive introduction to physical inspection-based approaches for electronics security. The authors explain the principles of physical inspection techniques including invasive, non-invasive and semi-invasive approaches and how they can be used for hardware assurance, from IC to PCB level. Coverage includes a wide variety of topics, from failure analysis and imaging, to testing, machine learning and automation, reverse engineering and attacks, and countermeasures.




Reliability of Microtechnology


Book Description

Reliability of Microtechnology discusses the reliability of microtechnology products from the bottom up, beginning with devices and extending to systems. The book's focus includes but is not limited to reliability issues of interconnects, the methodology of reliability concepts and general failure mechanisms. Specific failure modes in solder and conductive adhesives are discussed at great length. Coverage of accelerated testing, component and system level reliability, and reliability design for manufacturability are also described in detail. The book also includes exercises and detailed solutions at the end of each chapter.




Die-Attach Materials for High Temperature Applications in Microelectronics Packaging


Book Description

This book presents the scientific principles, processing conditions, probable failure mechanisms, and a description of reliability performance and equipment required for implementing high-temperature and lead-free die attach materials. In particular, it addresses the use of solder alloys, silver and copper sintering, and transient liquid-phase sintering. While different solder alloys have been used widely in the microelectronics industry, the implementation of sintering silver and transient liquid-phase sintering remains limited to a handful of companies. Hence, the book devotes many chapters to sintering technologies, while simultaneously providing only a cursory coverage of the more widespread techniques employing solder alloys. Addresses the differences between sintering and soldering (the current die-attach technologies), thereby comprehensively addressing principles, methods, and performance of these high-temperature die-attach materials; Emphasizes the industrial perspective, with chapters written by engineers who have hands-on experience using these technologies; Baker Hughes, Bosch and ON Semiconductor, are represented as well as materials suppliers such as Indium; Simultaneously provides the detailed science underlying these technologies by leading academic researchers in the field.







Recent Books