Indoor Environment


Book Description

Covering the fundamentals of air-borne particles and settled dust in the indoor environment, this handy reference investigates: * relevant definitions and terminology, * characteristics, * sources, * sampling techniques and instrumentation, * exposure assessment, * monitoring methods. The result is a useful and comprehensive overview for chemists, physicists and biologists, postgraduate students, medical practitioners, occupational health professionals, building owners and managers, building, construction and air-conditioning engineers, architects, environmental lawyers, government and regulatory professionals.




From Landfill Gas to Energy


Book Description

Converting old landfills to energy producing sites, while capturing emitted greenhouse gases, has faced numerous technical, financial and social challenges and developments lately. Also, the re-mining of landfills to recover useful land in dense urban areas and proper landfill closure has been a subject of discussion and investigation. Designed as an overview text for landfill management from cradle to grave, this volume’s content stretches from the fundamentals to the rather indepth details. By putting down their joint international experience, the authors have intended to both guide and inspire the user for his or her landfill project. Introducing the fundamental concepts of landfill gas management and its needs and importance in the present world energy scenario, this accessible reference volume presents key landfill gas management techniques at regional, national and global levels. In detail, it gives an account of the recent technologies available for landfill gas treatment and its utilization. It summarizes landfill gas prediction models developed in various parts of the world and details their adequacy in various field conditions. Covering both landfill remediation aspects and economic considerations while selecting a landfill gas to energy utilization project, the reader gets familiar with the practical aspects of converting a landfill site. Also, the challenges faced by municipalities and landfill operators in recovering landfill gas as an energy source are described, and solutions are suggested for solving them effectively. These include practical execution problems, governmental issues, and developing policies to encourage investment. The volume also includes various case studies of landfill gas-to-energy utilization projects from around the world, which can be reviewed and customized for the reader’s own application with the help of extensive reference section. Intended as an overview text for advanced students and researchers in the relevant engineering and technology fields (Environmental, Civil, Geotechnical, Chemical, Mechanical and Electrical), this book will also be particularly helpful to practitioners such as municipal managers, landfill operators, designers, solid waste management engineers, urban planners, professional consultants, scientists, non-governmental organizations and entrepreneurs.




Photocatalysis


Book Description

From environmental remediation to alternative fuels, this book explores the numerous important applications of photocatalysis. The book covers topics such as the photocatalytic processes in the treatment of water and air; the fundamentals of solar photocatalysis; the challenges involved in developing self-cleaning photocatalytic materials; photocatalytic hydrogen generation; photocatalysts in the synthesis of chemicals; and photocatalysis in food packaging and biomedical and medical applications. The book also critically discusses concepts for the future of photocatalysis, providing a fascinating insight for researchers. Together with Photocatalysis: Fundamentals and Perspectives, these volumes provide a complete overview to photocatalysis.




Applying Nanotechnology for Environmental Sustainability


Book Description

Nanomaterials have been used for years in industries such as consumer products, textile production, and biomedicine, yet the literature outlining their use in environmental causes is limited. The safety, toxicity, transportation, and removal of this technology must be addressed as nanotechnology and nanomaterial use is expected to grow. Applying Nanotechnology for Environmental Sustainability addresses the applications of nanomaterials in the field of environmental conservation and sustainability, and analyses the potential risks associated with their use. It elucidates the scientific concepts and emerging technologies in nanoscience and nanotoxicity by offering a wide range of innovative topics and reviews regarding its use. This publication is essential for environmental engineers, researchers, consultants, students, regulators, and professionals in the field of nanotechnology.




Food Industry Wastes


Book Description

Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book provides a guide for implementing bioprocessing techniques. It also helps researchers develop new options for the recuperation of these wastes for community benefit. More than 34 million tons of food waste was generated in the United States in 2009, at a cost of approximately $43 billion. And while less than three percent of that waste was recovered and recycled, there is growing interest and development in recovering and recycling food waste. These processes have the potential not only to reduce greenhouse gases, but to provide energy and resources for other purposes. This book examines these topics in detail, starting with sources, characterization and composition of food wastes, and development of green production strategies. The book then turns to treatment techniques such as solid-state fermentation and anaerobic digestion of solid food waste for biogas and fertilizer. A deep section on innovative biocatalysts and bioreactors follows, encompassing hydrogen generation and thermophilic aerobic bioprocessing technologies. Rounding out the volume are extensive sections on water footprints, including electricity generation from microbial fuel cells (MFCs), and life cycle assessments. - Food waste is an area of focus for a wide range of related industries from food science to energy and engineering - Outlines the development of green product strategies - International authoring team represents the leading edge in research and development - Highlights leading trends of current research as well as future opportunities for reusing food waste




Heterogeneous Photocatalysis


Book Description

The book explains the principles and fundamentals of photocatalysis and highlights the current developments and future potential of the green-chemistry-oriented applications of various inorganic, organic, and hybrid photocatalysts. The book consists of eleven chapters, including the principles and fundamentals of heterogeneous photocatalysis; the mechanisms and dynamics of surface photocatalysis; research on TiO2-based composites with unique nanostructures; the latest developments and advances in exploiting photocatalyst alternatives to TiO2; and photocatalytic materials for applications other than the traditional degradation of pollutants, such as carbon dioxide reduction, water oxidation, a complete spectrum of selective organic transformations and water splitting by photocatalytic reduction. In addition, heterogeneized polyoxometalate materials for photocatalytic purposes and the proper design of photocatalytic reactors and modeling of light are also discussed. This book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for undergraduate and graduate students focusing on heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science. Juan Carlos Colmenares is a Professor at the Institute of Physical Chemistry, Polish Academy of Sciences, Poland. Yi-Jun Xu is a Professor at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China.




New and Future Developments in Catalysis


Book Description

New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes.The use of solar energy during various catalytic chemical processes for the production of an array of chemical products is the theme of this volume. Photocatalysis is a topic of increasing importance due to its essential role in many of today's environmental and energy source problems. The use of solar energy for catalytic reactions results in a carbon dioxide–neutral process. All photocatalytic processes and the future developments in this area are discussed, including an economic analysis of the various processes. - Offers in-depth coverage of all catalytic topics of current interest and outlines future challenges and research areas - A clear and visual description of all parameters and conditions, enabling the reader to draw conclusions for a particular case - Outlines the catalytic processes applicable to energy generation and design of green processes




Photocatalysis


Book Description

This book is a printed edition of the Special Issue "Photocatalysis" that was published in Molecules




Nanomaterials for Environmental Protection


Book Description

This book is divided into four main sections thoroughly analyzing the use of nanomaterials for water, air and soil solutions, and emphasizing environmental risks. Providing background on nanomaterials' two-decade study, it discusses the characterization and application of unconventional disinfectants, called antimicrobial nanomaterials, which fall into three categories and, while seemingly harmless, have potential hazards if applied improperly. Special attention is given to the process of remediation, synthetics techniques, and properties of nanomaterials, with examples to which new and trained readers in the field can relate and understand. an interdisciplinary approach, aimed at scientists in physical chemistry, nanotechnology, and environmental sciences includes applications of non-conventional techniques in environmental protection furthers the development of applied nanoscience and nanotechnology suggests new industrial projects and university courses addressing nanotechnology in and for the environment includes applications for water, air and soil protection




Green Nanomaterials


Book Description

This book comprises a collection of chapters on advances in green nanomaterials. The book looks at ways to establish long‐term safe and sustainable forms of nanotechnology through implementation of nanoparticle biosynthesis with minimum impact on the ecosystem. The book looks at synthesis, processing, and applications of metal and metal oxide nanomaterials and also at bio-nanomaterials. The contents of this book will prove useful for researchers and professionals working in the field of nanomaterials and green technology.