Theoretical Fundamentals of Atmospheric Optics


Book Description

The book describes the theoretical fundamentals of atmospheric optics as a science of propagation, transformation and generation of electromagnetic radiation in the atmosphere from ultraviolet to microwave radiation. The main characteristics of the planets of the solar system and their atmospheres are given. The equation of the transfer of radiation in different spectral ranges, absorption of radiation by atmospheric gases and aerosol, molecular, aerosol and other types of nonresonant scattering, atmospheric refraction, reflection of radiation from the surface, and glow of the atmosphere are discussed. Methods of calculating radiation for the solar and thermal range of the spectrum are outlined. Problems of radiation energetics and remote probing of the atmosphere are discussed. 1. Solar system: planets and the Sun 2. Earth's atmosphere 3. Propagation of radiation in atmosphere 4. Molecular absorption in atmosphere 5. Scattering of light in atmosphere 6. Optical properties of underlying surfaces 7. Fundamentals of theory of transfer of natural radiation of atmosphere 8. Main concepts of theory of transfer of solar radiation 9. Radiation energetics of the atmosphereunderlying suface system 10. Radiation as a source of information on optical and physical parameters of planet atmospheres







Oceanography and Marine Biology, An Annual Review, Volume 40


Book Description

Interest in oceanography and marine biology and its relevance to global environmental issues continues to increase, creating a demand for authoritative reviews that summarize recent research. Oceanography and Marine Biology: An Annual Review has catered to this demand since its foundation, by the late Harold Barnes, more than 40 years ago. It is an







Monthly Weather Review


Book Description




Boundary-Layer Meteorology 25th Anniversary Volume, 1970–1995


Book Description

The journal Boundary-Layer Meteorology was started in 1970 and has become the premier vehicle for the publication of research papers in its field. Dr R.E. Munn served as Editor-in-Chief until recently. The special 25th Anniversary volume, on which this book is based, was compiled from review and other articles solicited and selected as a `Festschrift' to honour Ted Munn's achievement as editor of the journal over that time. Articles by leading contributors to the field include reviews of field studies (Askervein, HEXOS, Cabauw) and their impacts; numerical modelling (large-eddy simulation of the surface layer, frontal structures); analyses and critical discussions (of the von Karman constant, bulk aerodynamic formulations, air-sea interaction, vegetation canopies); and reviews or previews of progress in our understanding of the atmospheric boundary layer, turbulence simulation, Lagrangian descriptions of turbulent diffusion and remote sensing of the boundary layer. The collection provides an excellent perspective on the state of the subject and where it is headed. It should provide fascinating and stimulating reading for researchers and students of boundary-layer meteorology and related areas.







Modelling Ocean Climate Variability


Book Description

In this wide-ranging and comprehensive review of the historical development and current status of ocean circulation models, the analysis extends from simple analytical approaches to the latest high-resolution numerical models with data assimilation. The authors, both of whom are pioneer scientists in ocean and shelf sea modelling, look back at the evolution of Western and Eastern modelling methodologies during the second half of the last century. They also present the very latest information on ocean climate modelling and offer examples for a number of oceans and shelf seas. The book includes a critical analysis of literature on ocean climate variability modelling, as well as assessing the strengths and weaknesses of the best-known modelling techniques. It also anticipates future developments in the field, focusing on models based on a synthesis of numerical simulation and field observation, and on nonlinear thermodynamic model data synthesis.