Big Data: Conceptual Analysis and Applications


Book Description

The book is devoted to the analysis of big data in order to extract from these data hidden patterns necessary for making decisions about the rational behavior of complex systems with the different nature that generate this data. To solve these problems, a group of new methods and tools is used, based on the self-organization of computational processes, the use of crisp and fuzzy cluster analysis methods, hybrid neural-fuzzy networks, and others. The book solves various practical problems. In particular, for the tasks of 3D image recognition and automatic speech recognition large-scale neural networks with applications for Deep Learning systems were used. Application of hybrid neuro-fuzzy networks for analyzing stock markets was presented. The analysis of big historical, economic and physical data revealed the hidden Fibonacci pattern about the course of systemic world conflicts and their connection with the Kondratieff big economic cycles and the Schwabe–Wolf solar activity cycles. The book is useful for system analysts and practitioners working with complex systems in various spheres of human activity.




Big Data: Concepts, Methodologies, Tools, and Applications


Book Description

The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.




Big Data


Book Description

Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. - Covers computational platforms supporting Big Data applications - Addresses key principles underlying Big Data computing - Examines key developments supporting next generation Big Data platforms - Explores the challenges in Big Data computing and ways to overcome them - Contains expert contributors from both academia and industry




Big Data and Innovation in Tourism, Travel, and Hospitality


Book Description

This book brings together multi-disciplinary research and practical evidence about the role and exploitation of big data in driving and supporting innovation in tourism. It also provides a consolidated framework and roadmap summarising the major issues that both researchers and practitioners have to address for effective big data innovation. The book proposes a process-based model to identify and implement big data innovation strategies in tourism. This process framework consists of four major parts: 1) inputs required for big data innovation; 2) processes required to implement big data innovation; 3) outcomes of big data innovation; and 4) contextual factors influencing big data exploitation and advances in big data exploitation for business innovation.




Big Data on Campus


Book Description

Webber, Henry Y. Zheng, Ying Zhou




Knowledge Graphs and Big Data Processing


Book Description

This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.




Big Data Applications in Industry 4.0


Book Description

Industry 4.0 is the latest technological innovation in manufacturing with the goal to increase productivity in a flexible and efficient manner. Changing the way in which manufacturers operate, this revolutionary transformation is powered by various technology advances including Big Data analytics, Internet of Things (IoT), Artificial Intelligence (AI), and cloud computing. Big Data analytics has been identified as one of the significant components of Industry 4.0, as it provides valuable insights for smart factory management. Big Data and Industry 4.0 have the potential to reduce resource consumption and optimize processes, thereby playing a key role in achieving sustainable development. Big Data Applications in Industry 4.0 covers the recent advancements that have emerged in the field of Big Data and its applications. The book introduces the concepts and advanced tools and technologies for representing and processing Big Data. It also covers applications of Big Data in such domains as financial services, education, healthcare, biomedical research, logistics, and warehouse management. Researchers, students, scientists, engineers, and statisticians can turn to this book to learn about concepts, technologies, and applications that solve real-world problems. Features An introduction to data science and the types of data analytics methods accessible today An overview of data integration concepts, methodologies, and solutions A general framework of forecasting principles and applications, as well as basic forecasting models including naïve, moving average, and exponential smoothing models A detailed roadmap of the Big Data evolution and its related technological transformation in computing, along with a brief description of related terminologies The application of Industry 4.0 and Big Data in the field of education The features, prospects, and significant role of Big Data in the banking industry, as well as various use cases of Big Data in banking, finance services, and insurance Implementing a Data Lake (DL) in the cloud and the significance of a data lake in decision making




Big Data Analytics in Chemoinformatics and Bioinformatics


Book Description

Big Data Analytics in Chemoinformatics and Bioinformatics: With Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology provides an up-to-date presentation of big data analytics methods and their applications in diverse fields. The proper management of big data for decision-making in scientific and social issues is of paramount importance. This book gives researchers the tools they need to solve big data problems in these fields. It begins with a section on general topics that all readers will find useful and continues with specific sections covering a range of interdisciplinary applications. Here, an international team of leading experts review their respective fields and present their latest research findings, with case studies used throughout to analyze and present key information. - Brings together the current knowledge on the most important aspects of big data, including analysis using deep learning and fuzzy logic, transparency and data protection, disparate data analytics, and scalability of the big data domain - Covers many applications of big data analysis in diverse fields such as chemistry, chemoinformatics, bioinformatics, computer-assisted drug/vaccine design, characterization of emerging pathogens, and environmental protection - Highlights the considerable benefits offered by big data analytics to science, in biomedical fields and in industry




Big Data Intelligence for Smart Applications


Book Description

Today, the use of machine intelligence, expert systems, and analytical technologies combined with Big Data is the natural evolution of both disciplines. As a result, there is a pressing need for new and innovative algorithms to help us find effective and practical solutions for smart applications such as smart cities, IoT, healthcare, and cybersecurity. This book presents the latest advances in big data intelligence for smart applications. It explores several problems and their solutions regarding computational intelligence and big data for smart applications. It also discusses new models, practical solutions,and technological advances related to developing and transforming cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.