Bio-Inspired Computational Paradigms


Book Description

Smart cities with various technological innovations have played an important role and influenced society as well. Due to voluminous data transactions within smart cities, security and privacy concerns need to be dealt with. Though taking care of safety and privacy is challenging, it is essential for a smart city to understand the bio-inspired computing paradigms. This book discusses the utilization of bio-inspired computing procedures for effective computational devices. • Discusses real-world usage of bio-inspired computations • Highlights how bio-inspired computations hold the potential to significantly increase network security and privacy • Talks about how society can avoid consequences of cyber security breaches • Examines the combination of bio-inspired computational methods with IoT, AI and big data This book is primarily aimed at graduates, researchers, IT and industry professionals.




Nature-Inspired Computing Paradigms in Systems


Book Description

Nature-Inspired Computing Paradigms in Systems: Reliability, Availability, Maintainability, Safety and Cost (RAMS+C) and Prognostics and Health Management (PHM) covers several areas that include bioinspired techniques and optimization approaches for system dependability. The book addresses the issue of integration and interaction of the bioinspired techniques in system dependability computing so that intelligent decisions, design, and architectures can be supported. It brings together these emerging areas under the umbrella of bio- and nature-inspired computational intelligence. The primary audience of this book includes experts and developers who want to deepen their understanding of bioinspired computing in basic theory, algorithms, and applications. The book is also intended to be used as a textbook for masters and doctoral students who want to enhance their knowledge and understanding of the role of bioinspired techniques in system dependability. - Provides the latest review - Covers various nature-inspired techniques applied to RAMS+C and PHM problems - Includes techniques applied to new applications




Computational Vision and Bio-Inspired Computing


Book Description

This book includes selected papers from the 5th International Conference on Computational Vision and Bio Inspired Computing (ICCVBIC 2021), held in Coimbatore, India, during November 25–26, 2021. This book presents state-of-the-art research innovations in computational vision and bio-inspired techniques. The book reveals the theoretical and practical aspects of bio-inspired computing techniques, like machine learning, sensor-based models, evolutionary optimization and big data modeling and management that make use of effectual computing processes in the bio-inspired systems. It also contributes to the novel research that focuses on developing bio-inspired computing solutions for various domains, such as human–computer interaction, image processing, sensor-based single processing, recommender systems and facial recognition, which play an indispensable part in smart agriculture, smart city, biomedical and business intelligence applications.




Bio-Inspired Computing and Networking


Book Description

Seeking new methods to satisfy increasing communication demands, researchers continue to find inspiration from the complex systems found in nature. From ant-inspired allocation to a swarm algorithm derived from honeybees, Bio-Inspired Computing and Networking explains how the study of biological systems can significantly improve computing, networki




Biologically Inspired Design


Book Description

From simple cases such as hook and latch attachments found in Velcro to articulated-wing flying vehicles, biology often has been used to inspire many creative design ideas. The scientific challenge now is to transform the paradigm into a repeatable and scalable methodology. Biologically Inspired Design explores computational techniques and tools that can help integrate the method into design practice. With an inspiring foreword from Janine Benyus, Biologically Inspired Design contains a dozen chapters written by some of the leading scholars in the transdisciplinary field of bioinspired design, such as Frank Fish, Julian Vincent and Jeannette Yen from biology, and Amaresk Chakrabarti, Satyandra Gupta and Li Shu from engineering. Based in part on discussions at two workshops sponsored by the United States National Science Foundation, this volume introduces and develops several methods and tools for bioinspired design including: Information-processing theories, Natural language techniques, Knowledge-based tools, and Functional approaches and Pedagogical techniques. By exploring these fundamental theories, techniques and tools for supporting biologically inspired design, this volume provides a comprehensive resource for design practitioners wishing to explore the paradigm, an invaluable guide to design educators interested in teaching the method, and a preliminary reading for design researchers wanting to investigate bioinspired design.




Computational Vision and Bio-Inspired Computing


Book Description

This book includes selected papers from the 4th International Conference on Computational Vision and Bio Inspired Computing (ICCVBIC 2020), held in Coimbatore, India, from November 19 to 20, 2020. This proceedings book presents state-of-the-art research innovations in computational vision and bio-inspired techniques. The book reveals the theoretical and practical aspects of bio-inspired computing techniques, like machine learning, sensor-based models, evolutionary optimization and big data modeling and management that make use of effectual computing processes in the bio-inspired systems. As such it contributes to the novel research that focuses on developing bio-inspired computing solutions for various domains, such as human–computer interaction, image processing, sensor-based single processing, recommender systems and facial recognition, which play an indispensable part in smart agriculture, smart city, biomedical and business intelligence applications.




Nature-Inspired Computation and Swarm Intelligence


Book Description

Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence. Introduces nature-inspired algorithms and their fundamentals, including: particle swarm optimization, bat algorithm, cuckoo search, firefly algorithm, flower pollination algorithm, differential evolution and genetic algorithms as well as multi-objective optimization algorithms and others Provides a theoretical foundation and analyses of algorithms, including: statistical theory and Markov chain theory on the convergence and stability of algorithms, dynamical system theory, benchmarking of optimization, no-free-lunch theorems, and a generalized mathematical framework Includes a diversity of case studies of real-world applications: feature selection, clustering and classification, tuning of restricted Boltzmann machines, travelling salesman problem, classification of white blood cells, music generation by artificial intelligence, swarm robots, neural networks, engineering designs and others




Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing


Book Description

This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.




Handbook of Bioinspired Algorithms and Applications


Book Description

The mystique of biologically inspired (or bioinspired) paradigms is their ability to describe and solve complex relationships from intrinsically very simple initial conditions and with little or no knowledge of the search space. Edited by two prominent, well-respected researchers, the Handbook of Bioinspired Algorithms and Applications reveals the




Bio-inspired Neurocomputing


Book Description

This book covers the latest technological advances in neuro-computational intelligence in biological processes where the primary focus is on biologically inspired neuro-computational techniques. The theoretical and practical aspects of biomedical neural computing, brain-inspired computing, bio-computational models, artificial intelligence (AI) and machine learning (ML) approaches in biomedical data analytics are covered along with their qualitative and quantitative features. The contents cover numerous computational applications, methodologies and emerging challenges in the field of bio-soft computing and bio-signal processing. The authors have taken meticulous care in describing the fundamental concepts, identifying the research gap and highlighting the problems with the strategical computational approaches to address the ongoing challenges in bio-inspired models and algorithms. Given the range of topics covered, this book can be a valuable resource for students, researchers as well as practitioners interested in the rapidly evolving field of neurocomputing and biomedical data analytics.




Recent Books