BIO2010


Book Description

Biological sciences have been revolutionized, not only in the way research is conductedâ€"with the introduction of techniques such as recombinant DNA and digital technologyâ€"but also in how research findings are communicated among professionals and to the public. Yet, the undergraduate programs that train biology researchers remain much the same as they were before these fundamental changes came on the scene. This new volume provides a blueprint for bringing undergraduate biology education up to the speed of today's research fast track. It includes recommendations for teaching the next generation of life science investigators, through: Building a strong interdisciplinary curriculum that includes physical science, information technology, and mathematics. Eliminating the administrative and financial barriers to cross-departmental collaboration. Evaluating the impact of medical college admissions testing on undergraduate biology education. Creating early opportunities for independent research. Designing meaningful laboratory experiences into the curriculum. The committee presents a dozen brief case studies of exemplary programs at leading institutions and lists many resources for biology educators. This volume will be important to biology faculty, administrators, practitioners, professional societies, research and education funders, and the biotechnology industry.




Math and Bio 2010


Book Description

"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi




Index Medicus


Book Description

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.




Computer Simulation and Data Analysis in Molecular Biology and Biophysics


Book Description

This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive.




Life


Book Description

Authoritative, thorough, and engaging, Life: The Science of Biology achieves an optimal balance of scholarship and teachability, never losing sight of either the science or the student. The first introductory text to present biological concepts through the research that revealed them, Life covers the full range of topics with an integrated experimental focus that flows naturally from the narrative. This approach helps to bring the drama of classic and cutting-edge research to the classroom - but always in the context of reinforcing core ideas and the innovative scientific thinking behind them. Students will experience biology not just as a litany of facts or a highlight reel of experiments, but as a rich, coherent discipline.




BioMath in the Schools


Book Description

Even though contemporary biology and mathematics are inextricably linked, high school biology and mathematics courses have traditionally been taught in isolation. But this is beginning to change. This volume presents papers related to the integration of biology and mathematics in high school classes. The first part of the book provides the rationale for integrating mathematics and biology in high school courses as well as opportunities for doing so. The second part explores the development and integration of curricular materials and includes responses from teachers. Papers in the third part of the book explore the interconnections between biology and mathematics in light of new technologies in biology. The last paper in the book discusses what works and what doesn't and presents positive responses from students to the integration of mathematics and biology in their classes.




Undergraduate Mathematics for the Life Sciences


Book Description

There is a gap between the extensive mathematics background that is beneficial to biologists and the minimal mathematics background biology students acquire in their courses. The result is an undergraduate education in biology with very little quantitative content. New mathematics courses must be devised with the needs of biology students in mind. In this volume, authors from a variety of institutions address some of the problems involved in reforming mathematics curricula for biology students. The problems are sorted into three themes: Models, Processes, and Directions. It is difficult for mathematicians to generate curriculum ideas for the training of biologists so a number of the curriculum models that have been introduced at various institutions comprise the Models section. Processes deals with taking that great course and making sure it is institutionalized in both the biology department (as a requirement) and in the mathematics department (as a course that will live on even if the creator of the course is no longer on the faculty). Directions looks to the future, with each paper laying out a case for pedagogical developments that the authors would like to see.




A New Biology for the 21st Century


Book Description

Now more than ever, biology has the potential to contribute practical solutions to many of the major challenges confronting the United States and the world. A New Biology for the 21st Century recommends that a "New Biology" approach-one that depends on greater integration within biology, and closer collaboration with physical, computational, and earth scientists, mathematicians and engineers-be used to find solutions to four key societal needs: sustainable food production, ecosystem restoration, optimized biofuel production, and improvement in human health. The approach calls for a coordinated effort to leverage resources across the federal, private, and academic sectors to help meet challenges and improve the return on life science research in general.




Light and Video Microscopy


Book Description

The purpose of this book is to provide the most comprehensive, easy-to-use, and informative guide on light microscopy. Light and Video Microscopy will prepare the reader for the accurate interpretation of an image and understanding of the living cell. With the presentation of geometrical optics, it will assist the reader in understanding image formation and light movement within the microscope. It also provides an explanation of the basic modes of light microscopy and the components of modern electronic imaging systems and guides the reader in determining the physicochemical information of living and developing cells, which influence interpretation. Brings together mathematics, physics, and biology to provide a broad and deep understanding of the light microscope Clearly develops all ideas from historical and logical foundations Laboratory exercises included to assist the reader with practical applications Microscope discussions include: bright field microscope, dark field microscope, oblique illumination, phase-contrast microscope, photomicrography, fluorescence microscope, polarization microscope, interference microscope, differential interference microscope, and modulation contrast microscope




Principles of Life


Book Description

For sample chapters, a video interview with David Hillis, and more information, visit www.whfreeman.com/hillispreview. Sinauer Associates and W.H. Freeman are proud to introduce Principles of Life. Written in the spirit of the reform movement that is reinvigorating the introductory majors course, Principles of Life cuts through the thicket of excessive detail and factual minutiae to focus on what matters most in the study of biology today. Students explore the most essential biological ideas and information in the context of the field’s defining experiments, and are actively engaged in analyzing research data. The result is a textbook that is hundreds of pages shorter (and significantly less expensive) than the current majors introductory books.