Identification and Quantification of Drugs, Metabolites, Drug Metabolizing Enzymes, and Transporters


Book Description

Identification and Quantification of Drugs, Metabolites, Drug Metabolizing Enzymes, and Transporters, Second Edition, is completely updated to provide an overview of the last decade's numerous advances in analytical technologies for detection and quantification of drugs, metabolites, and biomarkers. This new edition goes beyond LC-MS and features all-new chapters on how to evaluate drug absorption, distribution, metabolism, and excretion, potential for hepatic and renal toxicity, immunogenicity of biotherapeutics and translational tools for predicting human dosage, safety and efficacy of small molecules and biologics. This book will be an important handbook and desk reference for pharmacologists, toxicologists, clinical scientists, and students interested in the fields of pharmacology, biochemistry, and drug metabolism. Four sections in the book with 24 chapters give readers an overview of state-of-the-art techniques for identifying and quantifying drugs, metabolites and biomarkers, including a chapter on new approaches for quantification of enzymes and transporters in different tissues Focuses on the role of drug metabolism enzymes, transporters in disposition and drug-drug interactions, as well as strategies for evaluating drug metabolism and safety using advanced liver and kidney models. Discussions on immunogenicity risks of biologics and their evaluation methods have been included Includes several chapters on advanced translational sciences to predict human dosage, pharmacokinetics and efficacy for small molecules and biotherapeutics All chapters are written by experts with a wide range of practical experience from the industry and academia




Metabolism of Drugs and Other Xenobiotics


Book Description

A practice-oriented desktop reference for medical professionals, toxicologists and pharmaceutical researchers, this handbook provides systematic coverage of the metabolic pathways of all major classes of xenobiotics in the human body. The first part comprehensively reviews the main enzyme systems involved in biotransformation and how they are orchestrated in the body, while parts two to four cover the three main classes of xenobiotics: drugs, natural products, environmental pollutants. The part on drugs includes more than 300 substances from five major therapeutic groups (central nervous system, cardiovascular system, cancer, infection, and pain) as well as most drugs of abuse including nicotine, alcohol and "designer" drugs. Selected, well-documented case studies from the most important xenobiotics classes illustrate general principles of metabolism, making this equally useful for teaching courses on pharmacology, drug metabolism or molecular toxicology. Of particular interest, and unique to this volume is the inclusion of a wide range of additional xenobiotic compounds, including food supplements, herbal preparations, and agrochemicals.




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Enzyme Kinetics in Drug Metabolism


Book Description

Drug metabolism and transport are very important facets within the discipline of pharmaceutical sciences, with enzyme kinetic concepts utilized regularly in characterizing and modeling the disposition and elimination of drugs. Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications focuses on very practical aspects of applying kinetic principles to drug metabolizing enzymes and transporters. Divided into five convenient sections, topics include the fundamental principles of enzyme kinetics, the kinetics of oxidative and conjugative drug metabolizing enzymes and drug transporters, modeling approaches for both drug metabolizing enzymes and transporters including novel systems biology approaches, understanding of variability both experimental and interindividual (pharmacogenomic), and case studies that provide real life examples of applying these principles. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics especially suitable for the novice, in some cases step-by-step, readily reproducible protocols, and insights to help with troubleshooting and avoiding known pitfalls with extensive cross referencing to assist in learning. Authoritative and easily accessible, Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications serves as a very practical teaching tool for novice, non-mathematically trained scientists interested in these fundamental concepts and as an aid for their supervisors in teaching these principles.




Transporters and Drug-Metabolizing Enzymes in Drug Toxicity


Book Description

TRANSPORTERS AND DRUG-METABOLIZING ENZYMES IN DRUG TOXICITY Explore up-to-date coverage on the interaction between drug metabolism enzymes, transporters, and drug toxicity with this leading resources Transporters and Drug-Metabolizing Enzymes in Drug Toxicity delivers a comprehensive and updated review of the relationship between drug metabolism, transporters, and toxicity, providing insights into a major challenge in drug development – accurate assessment of human drug toxicity. Combining two disciplines frequently considered independently of one another, the book combines drug metabolism and toxicology with a focus on the role of biotransformation on drug toxicity and as a major factor for species and individual differences. Mechanism and species differences in drug metabolizing enzymes and transporters are discussed, as are the methods used to investigate the role of drug metabolizing enzymes and transporters in drug toxicity. Finally, the distinguished authors describe promising new experimental approaches to accurately assessing human drug toxicity via the consideration of human-specific drug metabolism in toxicity assays. In addition to topics as diverse as extended clearance models, experimental approaches for the estimation of DILI potential of drug candidates and roles of transporters in renal drug toxicity, readers will also enjoy the inclusion of such subjects as: A thorough overview of and introduction to drug metabolism and transporters and drug toxicity An exploration of drug metabolism enzymes and transporter activities as risk factors of marketed drugs associated with drug-induced fatalities A discussion of human-based in vitro experimental models for the evaluation of metabolism-dependent drug toxicity A treatment of mechanism-based experimental models for the evaluation of BSEP inhibition and DILI An examination of transporters and cochlea toxicity Perfect for scientists, students, and practitioners with interests in metabolism, toxicology, and drug development in the pharmaceutical industry, Transporters and Drug-Metabolizing Enzymes in Drug Toxicity will also earn a place in the libraries of medicinal chemists, pharmacologists, biochemists, toxicologists, and regulators in the pharmaceutical and health industries.




Drug Metabolism and Pharmacokinetics Quick Guide


Book Description

Drug Metabolism and Pharmacokinetics Quick Guide covers a number of aspects of drug assessment at drug discovery and development stages, topics such as pharmacokinetics, absorption, metabolism, enzyme kinetics, drug transporters, drug interactions, drug-like properties, assays and in silico calculations. It covers key concepts, with useful tables on physiological parameters (eg. blood flow to organs in x-species, expression and localization of enzymes and transporters), chemical structure, nomenclature, and moieties leading to bioactivation (with examples). Overall it includes a number of key topics useful at the drug discovery stage, which would serve as a quick reference with several examples from the literature to illustrate the concept.




ADME-Enabling Technologies in Drug Design and Development


Book Description

A comprehensive guide to cutting-edge tools in ADME research The last decade has seen tremendous progress in the development of analytical techniques such as mass spectrometry and molecular biology tools, resulting in important advances in drug discovery, particularly in the area of absorption, distribution, metabolism, and excretion (ADME). ADME-Enabling Technologies in Drug Design and Development focuses on the current state of the art in the field, presenting a comprehensive review of the latest tools for generating ADME data in drug discovery. It examines the broadest possible range of available technologies, giving readers the information they need to choose the right tool for a given application, a key requisite for obtaining favorable results in a timely fashion for regulatory filings. With over thirty contributed chapters by an international team of experts, the book provides: A thorough examination of current tools, covering both electronic/mechanical technologies and biologically based ones Coverage of applications for each technology, including key parameters, optimal conditions for intended results, protocols, and case studies Detailed discussion of emerging tools and techniques, from stem cells and genetically modified animal models to imaging technologies Numerous figures and diagrams throughout the text Scientists and researchers in drug metabolism, pharmacology, medicinal chemistry, pharmaceutics, toxicology, and bioanalytical science will find ADME-Enabling Technologies in Drug Design and Development an invaluable guide to the entire drug development process, from discovery to regulatory issues.




Reactive Drug Metabolites


Book Description

Closing a gap in the scientifi c literature, this first comprehensive introduction to the topic is based on current best practice in one of the largest pharmaceutical companies worldwide. The first chapters trace the development of our understanding of drug metabolite toxicity, covering basic concepts and techniques in the process, while the second part details chemical toxicophores that are prone to reactive metabolite formation. This section also reviews the various drug-metabolizing enzymes that can participate in catalyzing reactive metabolite formation, including a discussion of the structure-toxicity relationships for drugs. Two chapters are dedicated to the currently hot topics of herbal constituents and IADRs. The next part covers current strategies and approaches to evaluate the reactive metabolite potential of new drug candidates, both by predictive and by bioanalytical methods. There then follows an in-depth analysis of the toxicological potential of the top 200 prescription drugs, illustrating the power and the limits of the toxicophore concept, backed by numerous case studies. Finally, a risk-benefi t approach to managing the toxicity risk of reactive metabolite-prone drugs is presented. Since the authors carefully develop the knowledge needed, from fundamental considerations to current industry standards, no degree in pharmacology is required to read this book, making it perfect for medicinal chemists without in-depth pharmacology training.




Haschek and Rousseaux's Handbook of Toxicologic Pathology


Book Description

Haschek and Rousseaux's Handbook of Toxicologic Pathology is a key reference on the integration of structure and functional changes in tissues associated with the response to pharmaceuticals, chemicals and biologics. The 3e has been expanded by a full volume, and covers aspects of safety assessment not discussed in the 2e. Completely revised with many new chapters, it remains the most authoritative reference on toxicologic pathology for scientists and researchers studying and making decisions on drugs, biologics, medical devices and other chemicals, including agrochemicals and environmental contaminants. New topics include safety assessment, the drug life cycle, risk assessment, communication and management, carcinogenicity assessment, pharmacology and pharmacokinetics, biomarkers in toxicologic pathology, quality assurance, peer review, agrochemicals, nanotechnology, food and toxicologic pathology, the environment and toxicologic pathology and more. - Provides new chapters and in-depth discussion of timely topics in the area of toxicologic pathology and broadens the scope of the audience to include toxicologists and pathologists working in a variety of settings - Offers high-quality and trusted content in a multi-contributed work written by leading international authorities in all areas of toxicologic pathology - Features hundreds of full color images in both the print and electronic versions of the book to highlight difficult concepts with clear illustrations




Microsomes and Drug Oxidations


Book Description

Microsomes and Drug Oxidations is a record of the proceedings of the Third International Symposium on Microsomes and Drug Oxidations, held in Berlin, Germany in July 1976. The compendium provides an overview of knowledge on the oxidative metabolism of drugs, carcinogens, and various other environmental chemicals. Topics discussed include lipid structure of liver microsomal membranes; interactions between cytochrome p-450 and nadphcytochrome p-450 reductase in the microsomal membrane; impact of drug monoxygenases in clinical pharmacology; and the manner in which oxygen participates in mixed-function oxidation reactions. Pharmacologists, toxicologists, biochemists, and researchers in the pharmaceutical industry will find the book highly insightful.