Biodegradable Materials and Their Applications


Book Description

BIODEGRADABLE MATERIALS AND THEIR APPLICATIONS Biodegradable materials have ascended in importance in recent years and this book comprehensively discusses all facets and applications in 29 chapters making it a one-stop shop. Biodegradable materials have today become more compulsory because of increased environmental concerns and the growing demand for polymeric and plastic materials. Despite our sincere efforts to recycle used plastic materials, they ultimately tend to enter the oceans, which has led to grave pollution. It is necessary, therefore, to ensure that these wastes do not produce any hazards in the future. This has made an urgency to replace the synthetic material with green material in almost all possible areas of application. Biodegradable Materials and Their Applications covers a wide range of subjects and approaches, starting with an introduction to biodegradable material applications. Chapters focus on the development of various types of biodegradable materials with their applications in electronics, medicine, packaging, thermoelectric generations, protective equipment, films/coatings, 3D printing, disposable bioplastics, agriculture, and other commercial sectors. In biomedical applications, their use in the advancement of therapeutic devices like temporary implants, tissue engineering, and drug delivery vehicles are summarized. Audience Materials scientists, environmental and sustainability engineers, and any other researchers and graduate students associated with biodegradable materials.




Biodegradable polymers for industrial applications


Book Description

The vast majority of plastic products are made from petroleum-based synthetic polymers that do not degrade in a landfill or in a compost-like environment. Therefore, the disposal of these products poses a serious environmental problem. An environmentally-conscious alternative is to design/synthesize polymers that are biodegradable. Biodegradable polymers for industrial applications introduces the subject in part one by outlining the classification and development of biodegradable polymers with individual chapters on polyhydroxyalkanoates, polyesteramides and thermoplastic starch biodegradable polymers and others. The second part explores the materials available for the production of biodegradable polymers. Polymers derived from sugars, natural fibres, renewable forest resources, poly(lactic acid) and protein-nanoparticle composites will be looked at in detail in this section. Part three looks at the properties and mechanisms of degradation, prefacing the subject with a chapter on current standards. The final part explores opportunities for industrial applications, with chapters on packing, agriculture and biodegradable polycaprolactone foams in supercritical carbon dioxide. Biodegradable polymers for industrial applications explores the fundamental concepts concerning the development of biodegradable polymers, degradable polymers from sustainable sources, degradation and properties and industrial applications. It is an authoritative book that will be invaluable for academics, researchers and policy makers in the industry.




Biodegradable Poly (Lactic Acid)


Book Description

"Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications" describes the preparation, modification, processing, and the research and applications of biodegradable poly (lactic acid), which belong to the biomedical and environment-friendly materials. Highly illustrated, the book introduces systematically the synthesis, physical and chemical modifications, and the latest developments of research and applications of poly (lactic acid) in biomedical materials. The book is intended for researchers and graduate students in the fields of materials science and engineering, polymer science and engineering, biomedicine, chemistry, environmental sciences, textile science and engineering, package materials, and so on. Dr. Jie Ren is a professor at the Institute of Nano and Bio-Polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai, China.




Science and Principles of Biodegradable and Bioresorbable Medical Polymers


Book Description

Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties provides a practical guide to the use of biodegradable and bioresorbable polymers for study, research, and applications within medicine. Fundamentals of the basic principles and science behind the use of biodegradable polymers in advanced research and in medical and pharmaceutical applications are presented, as are important new concepts and principles covering materials, properties, and computer modeling, providing the reader with useful tools that will aid their own research, product design, and development. Supported by practical application examples, the scope and contents of the book provide researchers with an important reference and knowledge-based educational and training aid on the basics and fundamentals of these important medical polymers. - Provides a practical guide to the fundamentals, synthesis, and processing of bioresorbable polymers in medicine - Contains comprehensive coverage of material properties, including unique insights into modeling degradation - Written by an eclectic mix of international authors with experience in academia and industry




Solvent Microextraction


Book Description

This book offers both a practical as well a theoretical approach to Solvent Microextraction (SME) and will help analytical chemists to evaluate SME for a given sample preparation. Introductory chapters overview a comparison of SME with other sample preparation methods, a summary of the technical aspects, and a detailed theoretical treatment of SME. The book then describes the practical aspects of the technique, with detailed “how to” chapters devoted to the preparation and analysis of atmospheric, solid and liquid environmental, clinical and industrial samples. This text will serve as both a handy laboratory desk-reference and an indispensible instructional tool.




Biodegradable and Biobased Polymers for Environmental and Biomedical Applications


Book Description

This volume incorporates 13 contributions from renowned experts from the relevant research fields that are related biodegradable and biobased polymers and their environmental and biomedical applications. Specifically, the book highlights: Developments in polyhydroxyalkanoates applications in agriculture, biodegradable packaging material and biomedical field like drug delivery systems, implants, tissue engineering and scaffolds The synthesis and elaboration of cellulose microfibrils from sisal fibres for high performance engineering applications in various sectors such as the automotive and aerospace industries, or for building and construction The different classes and chemical modifications of tannins Electro-activity and applications of Jatropha latex and seed The synthesis, properties and applications of poly(lactic acid) The synthesis, processing and properties of poly(butylene succinate), its copolymers, composites and nanocomposites The different routes for preparation polymers from vegetable oil and the effects of reinforcement and nano-reinforcement on the physical properties of such biobased polymers The different types of modified drug delivery systems together with the concept of the drug delivery matrix for controlled release of drugs and for antitumor drugs The use of nanocellulose as sustainable adsorbents for the removal of water pollutants mainly heavy metal ions, organic molecules, dyes, oil and CO2 The main extraction techniques, structure, properties and different chemical modifications of lignins Proteins and nucleic acids based biopolymers The role of tamarind seed polysaccharide-based multiple-unit systems in sustained drug release







Biodegradable Metals


Book Description

This book in the emerging research field of biomaterials covers biodegradable metals for biomedical applications. The book contains two main parts where each of them consists of three chapters. The first part introduces the readers to the field of metallic biomaterials, exposes the state of the art of biodegradable metals, and reveals its application for cardiovascular implants. Some fundamental aspects to give basic understanding on metals for further review on the degradable ones is covered in chapter one. The second chapter introduces the concept of biodegradable metals, it's state of the art and discuses a shifted paradigm from inert to bioactive, from corrosion resistant to corrodible metals. The third chapter focuses on the challenges and opportunities of using biodegradable metals for cardiovascular applications. The second part exposes an example of biodegradable metals from its concept to applications where a complete study on metallic biodegradable stent is detailed from materials design, development, testing till the implant fabrication. The forth chapter reveals new alloys development devoted for metallic biodegradable stent based on required criteria derrived from clinical needs and current nondegradable stents properties. Degradation of the alloys in simulated arterial conditions and its effect to cells are exposed in chapter five. The both chapters are concluded with a benchmarking of some more recent researches on materials development and testing for biodegradable stents. Chapter six reveals the tranformation process of the materials into stent prototypes where a standard process for making 316L stainless steel stents was followed. The book is completed by a perspective on the use of biodegradable metals for biomedical applications in the era of tissue engineering.







A Handbook of Applied Biopolymer Technology


Book Description

Scientists are conducting active research in different fields of engineering, science and technology by adopting the Green Chemistry Principles and methodologies to devise new processes, with a view to help protect and ultimately save the environment from further anthropogenic interruptions and damage. With this in mind, the book provides an up-to-date, coherently written and objectively presented set of chapters from eminent international researchers who are actively involved in academic and technological research in the synthesis, (bio)degradation, testing and applications of biodegradable polymers and biopolymers. This pool of the latest ideas, recent research and technological progress, together with a high level of thinking with a comprehensive perspective, makes the emerging field of biodegradable polymer science and engineering (or bio-based polymers) linked to environmental sustainability, the essence of this key publication. The handbook consists of chapters written and contributed by international experts from academia who are world leaders in research and technology in sustainability and biopolymer and biodegradable polymer synthesis, characterisation, testing and use. The book highlights the following areas: green polymers; biopolymers and bionanocomposites; biodegradable and injectable polymers; biodegradable polyesters; synthesis and physical properties; discovery and characterization of biopolymers; degradable bioelastomers, lactic acid based biodegradable polymers; enzymatic degradation of biodegradable polymers; biodegradation of polymers in the composting environment; recent development in biodegradable polymers; research and applications and biodegradable foams. The book is aimed at technical, research-orientated and marketing people in industry, universities and institutions. It will also be of value to the worldwide public interested in sustainability issues and biopolymer development as well as others interested in the practical means that are being used to reduce the environmental impacts of chemical processes and products, to further eco-efficiency, and to advance the utilization of renewable resources for a bio-based production and supplier chain. Readers will gain a comprehensive and consolidated overview of the immense potential and ongoing research in bio-based and biodegradable polymer science, engineering and technology to make the world greener.