A Guide to Methods in the Biomedical Sciences


Book Description

Thousands of methods have been developed in the various biomedical disciplines, and those covered in this book represent the basic, essential and most widely used methods in several different disciplines.




A Practical Guide to Biomedical Research


Book Description

This book advises and supports novice researchers in taking their first steps into the world of scientific research. Through practical tips and tricks presented in a clear, concise and step-wise manner, the book describes the entire research process from idea to publication. It also gives the reader insight into the vast opportunities a research career can provide. The books target demographic is aspiring researchers within the biomedical professions, be it medical students, young doctors, nurses, engineers, physiotherapists etc. The book will help aspirational inexperienced researchers turn their intentions into actions, providing crucial guidance for successful entry into the field of biomedical research.




Numerical Methods in Biomedical Engineering


Book Description

Numerical Modeling in Biomedical Engineering brings together the integrative set of computational problem solving tools important to biomedical engineers. Through the use of comprehensive homework exercises, relevant examples and extensive case studies, this book integrates principles and techniques of numerical analysis. Covering biomechanical phenomena and physiologic, cell and molecular systems, this is an essential tool for students and all those studying biomedical transport, biomedical thermodynamics & kinetics and biomechanics. - Supported by Whitaker Foundation Teaching Materials Program; ABET-oriented pedagogical layout - Extensive hands-on homework exercises




Evaluation Methods in Medical Informatics


Book Description

As director of a training program in medical informatics, I have found that one of the most frequent inquiries from graduate students is, "Although I am happy with my research focus and the work I have done, how can I design and carry out a practical evaluation that proves the value of my contribution?" Informatics is a multifaceted, interdisciplinary field with research that ranges from theoretical developments to projects that are highly applied and intended for near-term use in clinical settings. The implications of "proving" a research claim accordingly vary greatly depending on the details of an individual student's goals and thesis state ment. Furthermore, the dissertation work leading up to an evaluation plan is often so time-consuming and arduous that attempting the "perfect" evaluation is fre quently seen as impractical or as diverting students from central programming or implementation issues that are their primary areas of interest. They often ask what compromises are possible so they can provide persuasive data in support of their claims without adding another two to three years to their graduate student life. Our students clearly needed help in dealing more effectively with such dilem mas, and it was therefore fortuitous when, in the autumn of 1991, we welcomed two superb visiting professors to our laboratories.




Computer Methods in Biomechanics and Biomedical Engineering 2


Book Description

Contains papers presented at the Third International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (1997), which provide evidence that computer-based models, and in particular numerical methods, are becoming essential tools for the solution of many problems encountered in the field of biomedical engineering. The range of subject areas presented include the modeling of hip and knee joint replacements, assessment of fatigue damage in cemented hip prostheses, nonlinear analysis of hard and soft tissue, methods for the simulation of bone adaptation, bone reconstruction using implants, and computational techniques to model human impact. Computer Methods in Biomechanics and Biomedical Engineering also details the application of numerical techniques applied to orthodontic treatment together with introducing new methods for modeling and assessing the behavior of dental implants, adhesives, and restorations. For more information, visit the "http://www.uwcm.ac.uk/biorome/international symposium on Computer Methods in Biomechanics and Biomedical Engineering/home page, or "http://www.gbhap.com/Computer_Methods_Biomechanic s_Biome dical_Engineering/" the home page for the journal.




Methods in Biomedical Informatics


Book Description

Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. - Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications - Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. - Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.




Quantitative Biomedical Optics


Book Description

Based on physical science principles, Quantitative Biomedical Optics covers theory, instrumentation, methods and applications, with practical exercises and problem sets.




Introduction to Modeling and Numerical Methods for Biomedical and Chemical Engineers


Book Description

This textbook introduces the concepts and tools that biomedical and chemical engineering students need to know in order to translate engineering problems into a numerical representation using scientific fundamentals. Modeling concepts focus on problems that are directly related to biomedical and chemical engineering. A variety of computational tools are presented, including MATLAB, Excel, Mathcad, and COMSOL, and a brief introduction to each tool is accompanied by multiple computer lab experiences. The numerical methods covered are basic linear algebra and basic statistics, and traditional methods like Newton's method, Euler Integration, and trapezoidal integration. The book presents the reader with numerous examples and worked problems, and practice problems are included at the end of each chapter. Focuses on problems and methods unique to biomedical and chemical engineering; Presents modeling concepts drawn from chemical, mechanical, and materials engineering; Ancillary materials include lecture notes and slides and online videos that enable a flipped classroom or individual study.




Statistical Methods for the Analysis of Biomedical Data


Book Description

Dieser Band behandelt eine Reihe statistischer Themen, die bei der Analyse biologischer und medizinischer Daten allgemein Anwendung finden. Diese 2. Auflage wurde komplett überarbeitet, aktualisiert und erweitert. Einige Kapitel sind neu hinzugekommen, u.a. zur multiplen linearen Regression in der biomedizinischen Forschung. Der Stoff ist so gegliedert, dass der Leser den Text unabhängig von der jeweiligen statistischen Methode leicht nach Problemstellungen durchsuchen kann. Mit zahlreichen durchgearbeiteten Beispielen, die detaillierte Lösungsangaben zu Problemen aus der Praxis liefern.




Computational Methods in Biomedical Research


Book Description

Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging computational statistical methods that are used in biomedical research. Written by active researchers in the field, this authoritative collection covers a wide range of topics. It introduces each topic at a basic level, before moving on to more advanced discussions of applications. The book begins with microarray data analysis, machine learning techniques, and mass spectrometry-based protein profiling. It then uses state space models to predict US cancer mortality rates and provides an overview of the application of multistate models in analyzing multiple failure times. The book also describes various Bayesian techniques, the sequential monitoring of randomization tests, mixed-effects models, and the classification rules for repeated measures data. The volume concludes with estimation methods for analyzing longitudinal data. Supplying the knowledge necessary to perform sophisticated statistical analyses, this reference is a must-have for anyone involved in advanced biomedical and pharmaceutical research. It will help in the quest to identify potential new drugs for the treatment of a variety of diseases.