Biomimetic Materials Chemistry


Book Description

* Provides new insights into materials science * Indicates the value of biology in materials science * Demonstrates how new interdisciplinary studies are influencing the fields of materials science and chemistry * Surveys this new field and shows what progress has been made as well as indicating the potential of these applications * Leading scientists review biomimetic approaches to the synthesis and processing of nanoparticles, thin patterned films, ceramics, and organic-inorganic composites * Focuses on molecule synthesis, templating, organized construction and microstructural processing of biomimetic materials related titles are: - Meyers: Molecular Biology and Biotechnology - Silver: Biocompatibility Vol.1: Polymers




Modern Inorganic Synthetic Chemistry


Book Description

The contributors to this book discuss inorganic synthesis reactions, dealing with inorganic synthesis and preparative chemistry under specific conditions. They go on to describe the synthesis, preparation and assembly of six important categories of compounds with wide coverage of distinct synthetic chemistry systems




Bioinspiration and Biomimicry in Chemistry


Book Description

Can we emulate nature's technology in chemistry? Through billions of years of evolution, Nature has generated some remarkable systems and substances that have made life on earth what it is today. Increasingly, scientists are seeking to mimic Nature's systems and processes in the lab in order to harness the power of Nature for the benefit of society. Bioinspiration and Biomimicry in Chemistry explores the chemistry of Nature and how we can replicate what Nature does in abiological settings. Specifically, the book focuses on wholly artificial, man-made systems that employ or are inspired by principles of Nature, but which do not use materials of biological origin. Beginning with a general overview of the concept of bioinspiration and biomimicry in chemistry, the book tackles such topics as: Bioinspired molecular machines Bioinspired catalysis Biomimetic amphiphiles and vesicles Biomimetic principles in macromolecular science Biomimetic cavities and bioinspired receptors Biomimicry in organic synthesis Written by a team of leading international experts, the contributed chapters collectively lay the groundwork for a new generation of environmentally friendly and sustainable materials, pharmaceuticals, and technologies. Readers will discover the latest advances in our ability to replicate natural systems and materials as well as the many impediments that remain, proving how much we still need to learn about how Nature works. Bioinspiration and Biomimicry in Chemistry is recommended for students and researchers in all realms of chemistry. Addressing how scientists are working to reverse engineer Nature in all areas of chemical research, the book is designed to stimulate new discussion and research in this exciting and promising field.




Biomimetic Polymers


Book Description

The term biomimetic is comparatively new on the chemical scene, but the concept has been utilized by chemists for many years. Furthermore, the basic idea of making a synthetic material that can imitate the func tions of natural materials probably could be traced back into antiquity. From the dawn of creation, people have probably attempted to duplicate or modify the activities of the natural world. (One can even find allusions to these attempts in the Bible; e. g. , Genesis 30. ) The term "mimetic" means to imitate or mimic. The word "mimic" means to copy closely, or to imitate accurately. Biomimetic, which has not yet entered most dictionaries, means to imitate or mimic some specific bio logical function. Usually, the objective of biomimetics is to form some useful material without the need of utilizing living systems. In a simi lar manner, the term biomimetic polymers means creating synthetic poly mers which imitate the activity of natural bioactive polymers. This is a major advance in polymer chemistry because the natural bioactive polymers are the basis of life itself. Thus, biomimetic polymers imitate the life process in many ways. This present volume delineates some of the recent progress being made in this vast field of biomimetic polymers. Chemists have been making biomimetic polymers for more than fifty years, although this term wasn't used in the early investigations.




Biomineralization


Book Description




Biomimetics


Book Description

This revised, updated and expanded new edition presents an overview of biomimetics and biologically inspired structured surfaces. It deals with various examples of biomimetics which include surfaces with roughness-induced superomniphobicity, self-cleaning, antifouling, and controlled adhesion. The focus in the book is on the Lotus Effect, Salvinia Effect, Rose Petal Effect, Oleophobic/philic Surfaces, Shark Skin Effect, and Gecko Adhesion. This new edition also contains new chapters on the butterfly wing effect, bio- and inorganic fouling and structure and Properties of Nacre and structural coloration.




Biological Inorganic Chemistry


Book Description

The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters




Bioinorganic Chemistry


Book Description

Bioinorganic Chemistry provides a broad overview of this dynamic field, reviewing the key chemical elements that have important biological function, and exploring how the chemistry of these elements is central to the function of biological systems.




Handbook of Biomineralization


Book Description

This first comprehensive overview of the modern aspects of biomineralization represents life and materials science at its best: Bioinspired pathways are the hot topics in many disciplines and this holds especially true for biomineralization. Here, the editors -- well-known members of associations and prestigious institutes -- have assembled an international team of renowned authors to provide first-hand research results. This second volume deals with biometic model systems in biomineralization, including the biomineral approach to bionics, bioinspired materials synthesis and bio-supported materials chemistry, encapsulation and the imaging of internal nanostructures of biominerals. An interdisciplinary must-have account, for biochemists, bioinorganic chemists, lecturers in chemistry and biochemistry, materials scientists, biologists, and solid state physicists.




Bioinorganic Chemistry -- Inorganic Elements in the Chemistry of Life


Book Description

The field of Bioinorganic Chemistry has grown significantly in recent years; now one of the major sub-disciplines of Inorganic Chemistry, it has also pervaded other areas of the life sciences due to its highly interdisciplinary nature. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Second Edition provides a detailed introduction to the role of inorganic elements in biology, taking a systematic element-by-element approach to the topic. The second edition of this classic text has been fully revised and updated to include new structure information, emerging developments in the field, and an increased focus on medical applications of inorganic compounds. New topics have been added including materials aspects of bioinorganic chemistry, elemental cycles, bioorganometallic chemistry, medical imaging and therapeutic advances. Topics covered include: Metals at the center of photosynthesis Uptake, transport, and storage of essential elements Catalysis through hemoproteins Biological functions of molybdenum, tungsten, vanadium and chromium Function and transport of alkaline and alkaline earth metal cations Biomineralization Biological functions of the non-metallic inorganic elements Bioinorganic chemistry of toxic metals Biochemical behavior of radionuclides and medical imaging using inorganic compounds Chemotherapy involving non-essential elements This full color text provides a concise and comprehensive review of bioinorganic chemistry for advanced students of chemistry, biochemistry, biology, medicine and environmental science.