Biomimetic Robotics


Book Description

This book is for a first course in robotics, especially in unmanned aerial or underwater vehicles.




Neurotechnology for Biomimetic Robots


Book Description

An overview of neurotechnology, the engineering of robots based on animals and animal behavior. The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal's selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.




A survey of the development of biomimetic intelligence and robotics


Book Description

Keywords: Biomimetics Robotics Biomimetic intelligence Biomimetic robotics Biomimetics is the development of novel theories and technologies by emulating the models and systems of nature. The transfer of function from biological science into engineering promotes emerging research areas across many disparate disciplines. Recently, advances in biomimetic intelligence and robotics have gained great popularity. Biomimetic robotics are designed with biological characteristics and functions to be applied in different scenarios, such as humanoid robots in the home environment, quadruped robots in the field, and bird-like flying robots in the sky. Biomimetic intelligence aims to solve many complex problems by studying the principles of biological systems, resulting in a series of efficient algorithms, such as the genetic algorithm and neural network. Biomimetic intelligence further facilitates the performance of biomimetic robotics, making it possible to be deployed in more and more practical applications.




Biomimetic Technologies


Book Description

Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays. - Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering - Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential - Features cutting-edge examples of biomimetic technologies employed for a broad range of applications




Engineered Biomimicry


Book Description

Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. - Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering - Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each - Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more




Biomimetic and Biohybrid Systems


Book Description

This book constitutes the proceedings of the 12th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2022, in Genoa, Italy, held in July 19–22, 2022. The 44 full papers and 14 short papers presented were carefully reviewed and selected from 67 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems. The conference aims to highlight the most exciting research in both fields united by the theme of “Living Machines.”




Engineered Biomimicry


Book Description

Some basic features of biomimetic robotics and the technologies that are facilitating their development are discussed in this chapter. The emergence of smart materials and structures, smart sensors and actuators capable of mimicking biological transducers, bio-inspired signal-processing techniques, modeling and control of manipulators resembling biological limbs, and the shape control of flexible systems are the primary areas in which recent technological advances have taken place. Some key applications of these technological developments in the design of morphing airfoils, modeling and control of anthropomorphic manipulators and muscle activation modeling, and control for human limb prosthetic and orthotic applications are discussed. Also discussed, with some typical examples, are the related developments in the application of nonlinear optimal control and estimation, which are fundamental to the success of biomimetic robotics.




Biomimetics


Book Description

The interface between biological and non-biological worlds becomes increasingly blurred due to significant advances in our understanding of biological phenomena and the development of sophisticated means to manipulate molecular systems for varied applications. This book methodically describes artificial and synthetic assemblies mimicking biological and living systems - from biomaterials to drug discovery to microelectronics and computer sciences.




Principles of Robot Motion


Book Description

A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.




Biomimetic and Biohybrid Systems


Book Description

This book constitutes the proceedings of the 11th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2022, held as virtual event, in July 19–22, 2022. The conference was held virtually due to the COVID-19 crisis. The 30 full papers and 8 short papers presented were carefully reviewed and selected from 48 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems; biomimetics; and research that seeks to interface biological and artificial systems to create biohybrid systems.