Biostatistics for Epidemiologists


Book Description

Biostatistics for Epidemiologists is a unique book that provides a collection of methods that can be used to analyze data in most epidemiological studies. It examines the theoretical background of the methods described and discusses general principles that apply to the analysis of epidemiological data. Specific topics addressed include statistical interference in epidemiological research, important methods used for analyzing epidemiological data, multivariate models, dose-response analysis, analysis of the interaction between causes of disease, meta-analysis, and computer programs. Biostatistics for Epidemiologists will be a useful guide for all epidemiologists and public health professionals who rely on biostatistical data in their work.




Biostatistics for Epidemiology and Public Health Using R


Book Description

Since it first appeared in 1996, the open-source programming language R has become increasingly popular as an environment for statistical analysis and graphical output. In addition to being freely available, R offers several advantages for biostatistics, including strong graphics capabilities, the ability to write customized functions, and its extensibility. This is the first textbook to present classical biostatistical analysis for epidemiology and related public health sciences to students using the R language. Based on the assumption that readers have minimal familiarity with statistical concepts, the author uses a step-bystep approach to building skills. The text encompasses biostatistics from basic descriptive and quantitative statistics to survival analysis and missing data analysis in epidemiology. Illustrative examples, including real-life research problems and exercises drawn from such areas as nutrition, environmental health, and behavioral health, engage students and reinforce the understanding of R. These examples illustrate the replication of R for biostatistical calculations and graphical display of results. The text covers both essential and advanced techniques and applications in biostatistics that are relevant to epidemiology. This text is supplemented with teaching resources, including an online guide for students in solving exercises and an instructor's manual. KEY FEATURES: First overview biostatistics textbook for epidemiology and public health that uses the open-source R program Covers essential and advanced techniques and applications in biostatistics as relevant to epidemiology Features abundant examples and exercises to illustrate the application of R language for biostatistical calculations and graphical displays of results Includes online student solutions guide and instructor's manual




Epidemiology and Biostatistics


Book Description

Concise, fast-paced, intensive introduction to clinical research design for students and clinical research professionals Readers will gain sufficient knowledge to pass the United States Medical Licensing Examination part I section in Epidemiology




Biostatistics and Epidemiology


Book Description

Biostatistics and Epidemiology/A Primer for Health Professionals offers practical guidelines and gives a concise framework for research and interpretation in the field. In addition to major sections covering statistics and epidemiology, the book includes a comprehensive exploration of scientific methodology, probability, and the clinical trial. The principles and methods described in this book are basic and apply to all medical subspecialties, psychology and education. The primer will be especially useful to public health officials and students looking for an understandable treatment of the subject.




Clinical Epidemiology and Biostatistics


Book Description

Here is a book for clinicians, clinical investigators, trainees, and graduates who wish to develop their proficiency in the planning, execution, and interpretation of clinical and epidemiological research. Emphasis is placed on the design and analysis of research studies involving human subjects where the primary interest concerns principles of analytic (cause-and- effect) inference. The topic is presented from the standpoint of the clinician and assumes no previous knowledge of epidemiology, research design or statistics. Extensive use is made of illustrative examples from a variety of clinical specialties and subspecialties. The book is divided into three parts. Part I deals with epidemiological research design and analytic inference, including such issues as measurement, rates, analytic bias, and the main forms of observational and experimental epidemiological studies. Part II presents the principles and applications of biostatistics, with emphasis on statistical inference. Part III comprises four chapters covering such topics as diagnostic tests, decision analysis, survival (life-table) analysis, and causality.




Basic Biostatistics for Geneticists and Epidemiologists


Book Description

Anyone who attempts to read genetics or epidemiology research literature needs to understand the essentials of biostatistics. This book, a revised new edition of the successful Essentials of Biostatistics has been written to provide such an understanding to those who have little or no statistical background and who need to keep abreast of new findings in this fast moving field. Unlike many other elementary books on biostatistics, the main focus of this book is to explain basic concepts needed to understand statistical procedures. This Book: Surveys basic statistical methods used in the genetics and epidemiology literature, including maximum likelihood and least squares. Introduces methods, such as permutation testing and bootstrapping, that are becoming more widely used in both genetic and epidemiological research. Is illustrated throughout with simple examples to clarify the statistical methodology. Explains Bayes’ theorem pictorially. Features exercises, with answers to alternate questions, enabling use as a course text. Written at an elementary mathematical level so that readers with high school mathematics will find the content accessible. Graduate students studying genetic epidemiology, researchers and practitioners from genetics, epidemiology, biology, medical research and statistics will find this an invaluable introduction to statistics.




Epidemiology, Biostatistics, and Preventive Medicine


Book Description

You'll find the latest on healthcare policy and financing, infectious diseases, chronic disease, and disease prevention technology.




Fundamentals of Epidemiology and Biostatistics


Book Description

This book will familiarize your students with basic principles of epidemiology and biostatistics. Designed for use in a single course, it will clarify the distinction and complementary roles of epidemiology and biostatistics in a range of settings, and train students on the complementary roles epidemiology and biostatistics play in carrying out selected activities in the health professions.




Applied Epidemiology and Biostatistics


Book Description

This book provides not only the theory of biostatistics, but also the opportunity of applying it in practice. In fact, each chapter presents one or more specific examples on how to perform an epidemiological or statistical data analysis and includes download access to the software and databases, giving the reader the possibility of replicating the analyses described.




SAS for Epidemiologists


Book Description

This comprehensive text covers the use of SAS for epidemiology and public health research. Developed with students in mind and from their feedback, the text addresses this material in a straightforward manner with a multitude of examples. It is directly applicable to students and researchers in the fields of public health, biostatistics and epidemiology. Through a “hands on” approach to the use of SAS for a broad number of epidemiologic analyses, readers learn techniques for data entry and cleaning, categorical analysis, ANOVA, and linear regression and much more. Exercises utilizing real-world data sets are featured throughout the book. SAS screen shots demonstrate the steps for successful programming. SAS (Statistical Analysis System) is an integrated system of software products provided by the SAS institute, which is headquartered in California. It provides programmers and statisticians the ability to engage in many sophisticated statistical analyses and data retrieval and mining exercises. SAS is widely used in the fields of epidemiology and public health research, predominately due to its ability to reliably analyze very large administrative data sets, as well as more commonly encountered clinical trial and observational research data.