Click Chemistry for Biotechnology and Materials Science


Book Description

Mimicking natural biochemical processes, click chemistry is a modular approach to organic synthesis, joining together small chemical units quickly, efficiently and predictably. In contrast to complex traditional synthesis, click reactions offer high selectivity and yields, near-perfect reliability and exceptional tolerance towards a wide range of functional groups and reaction conditions. These ‘spring loaded’ reactions are achieved by using a high thermodynamic driving force, and are attracting tremendous attention throughout the chemical community. Originally introduced with the focus on drug discovery, the concept has been successfully applied to materials science, polymer chemistry and biotechnology. The first book to consider this topic, Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application to the precise design and synthesis of macromolecules, and its numerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trends and future applications, and provides an important nucleation point for research. Edited by one of the top 100 young innovators with the greatest potential to have an impact on technology in the 21st century according to Technology Review and with contributions from pioneers in the field, Click Chemistry for Biotechnology and Materials Science provides an ideal reference for anyone wanting to learn more about click reactions.




Biochemical Engineering and Biotechnology


Book Description

Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. - Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others - Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals - Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations - Offers many graphs that present actual experimental data, figures, and tables, along with explanations




Engineering Principles in Biotechnology


Book Description

This book is a short introduction to the engineering principles of harnessing the vast potential of microorganisms, and animal and plant cells in making biochemical products. It was written for scientists who have no background in engineering, and for engineers with minimal background in biology. The overall subject dealt with is process. But the coverage goes beyond the process of biomanufacturing in the bioreactor, and extends to the factory of cell’s biosynthetic machinery. Starting with an overview of biotechnology and organism, engineers are eased into biochemical reactions and life scientists are exposed to the technology of production using cells. Subsequent chapters allow engineers to be acquainted with biochemical pathways, while life scientist learn about stoichiometric and kinetic principles of reactions and cell growth. This leads to the coverage of reactors, oxygen transfer and scale up. Following three chapters on biomanufacturing of current and future importance, i.e. cell culture, stem cells and synthetic biology, the topic switches to product purification, first with a conceptual coverage of operations used in bioseparation, and then a more detailed analysis to provide a conceptual understanding of chromatography, the modern workhorse of bioseparation. Drawing on principles from engineering and life sciences, this book is for practitioners in biotechnology and bioengineering. The author has used the book for a course for advanced students in both engineering and life sciences. To this end, problems are provided at the end of each chapter.




Biomass Conversion


Book Description

The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.




Handbook of Industrial Chemistry and Biotechnology


Book Description

Substantially revising and updating the classic reference in the field, this handbook offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. It provides not only the underlying science and technology for important industry sectors, but also broad coverage of critical supporting topics. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in chapters on Green Engineering and Chemistry (specifically, biomass conversion), Practical Catalysis, and Environmental Measurements; as well as expanded treatment of Safety, chemistry plant security, and Emergency Preparedness. Understanding these factors allows them to be part of the total process and helps achieve optimum results in, for example, process development, review, and modification. Important topics in the energy field, namely nuclear, coal, natural gas, and petroleum, are covered in individual chapters. Other new chapters include energy conversion, energy storage, emerging nanoscience and technology. Updated sections include more material on biomass conversion, as well as three chapters covering biotechnology topics, namely, Industrial Biotechnology, Industrial Enzymes, and Industrial Production of Therapeutic Proteins.




Opportunities in Biotechnology for Future Army Applications


Book Description

This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.




Biomaterials Science


Book Description

The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials' community. - The most comprehensive coverage of principles and applications of all classes of biomaterials - Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. - Online chapter exercises available for most chapters




Silk Polymers


Book Description

Considering silk from spiders, midges, and aquatic insects as well as from silk worms, the 29 papers discuss recent research in the biology, genetics, synthesis, characterization, properties, modeling, processing, and applications. Addressed to biotechnologists, materials scientists, and other professionals. Reproduced from typescripts. Annotation copyright by Book News, Inc., Portland, OR




Modern Biotechnology


Book Description

A unique resource for the next generation of biotech innovators Enabling everything from the deciphering of the human genome to environmentally friendly biofuels to lifesaving new pharmaceuticals, biotechnology has blossomed as an area of discovery and opportunity. Modern Biotechnology provides a much-needed introduction connecting the latest innovations in this area to key engineering fundamentals. With an unmatched level of coverage, this unique resource prepares a wide range of readers for the practical application of biotechnology in biopharmaceuticals, biofuels, and other bioproducts. Organized into fourteen sections, reflecting a typical semester course, Modern Biotechnology covers such key topics as: Metabolic engineering Enzymes and enzyme kinetics Biocatalysts and other new bioproducts Cell fusion Genetic engineering, DNA, RNA, and genes Genomes and genomics Production of biopharmaceuticals Fermentation modeling and process analysis Taking a practical, applications-based approach, the text presents discussions of important fundamentals in biology, biochemistry, and engineering with relevant case studies showing technology applications and manufacturing scale-up. Written for today's wider, more interdisciplinary readership, Modern Biotechnology offers a solid intellectual foundation for students and professionals entering the modern biotechnology industry.




Biotechnology of Metals


Book Description

Biotechnology of Metals: Principles, Recovery Methods and Environmental Concerns deals with all aspects of metal biotechnology in different areas, such as biogenesis, biomaterials, biomimetic strategies, biohydrometallurgy, mineral biobeneficiation, electrobioleaching, microbial corrosion, human implants, concrete biocorrosion, microbiology of environment pollution, and bioremediation. As the technology of this interdisciplinary science has diversified over the last five years, this book provides a valuable source for scientists and students in a number of disciplines, including geology, chemistry, metallurgy, microbiology, chemical engineering, environment, civil engineering, and biomedical engineering. - Offers comprehensive coverage of an interdisciplinary subject - Outlines the role of microbiology and biotechnology in mining, metallurgy, waste disposal and environmental control - Covers new topics, such as biogenesis, biomaterials processing, the role of micro-organisms in causing corrosion, and much more - Presents scientifically illustrated experimental research methods in metals biotechnology