Boundary Integral and Singularity Methods for Linearized Viscous Flow


Book Description

In addition to theory, this study focuses on practical application and computer implementation in a coherent introduction to boundary integrals, boundary element and singularity methods for steady and unsteady flow at zero Reynolds numbers.




The Fast Solution of Boundary Integral Equations


Book Description

This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.




Boundary Integral Equations


Book Description

This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.




Boundary Integral Methods


Book Description




Boundary Element Methods


Book Description

This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.




The Boundary Element Method for Engineers and Scientists


Book Description

The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code and programs listed in the book and also available in electronic form on the book's companion website. - Offers an accessible guide to BEM principles and numerical implementation, with worked examples and detailed discussion of practical applications - This second edition features three new chapters, including coverage of the dual reciprocity method (DRM) and analog equation method (AEM), with their application to complicated problems, including time dependent and non-linear problems, as well as problems described by fractional differential equations - Companion website includes source code of all computer programs developed in the book for the solution of a broad range of real-life engineering problems




Boundary Integral Equation Methods for Solids and Fluids


Book Description

The boundary element method is more appropriate than the finite element method to tackle linear, wave propagation, infinite domain, mobile boundaries and unknown boundaries problems. In some engineering applications, both methods are combined. This book presents the mathematical basis of this method and its computer implementation. Numerous applications to fluid mechanics, mechanics of solids, acoustics and electromagnetism are developed.




Linear Integral Equations


Book Description

This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn–Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)




Boundary Integral Equations in Elasticity Theory


Book Description

by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.




Direct and Indirect Boundary Integral Equation Methods


Book Description

The computational power currently available means that practitioners can find extremely accurate approximations to the solutions of more and more sophisticated mathematical models-providing they know the right analytical techniques. In relatively simple terms, this book describes a class of techniques that fulfill this need by providing closed-form solutions to many boundary value problems that arise in science and engineering. Boundary integral equation methods (BIEM's) have certain advantages over other procedures for solving such problems: BIEM's are powerful, applicable to a wide variety of situations, elegant, and ideal for numerical treatment. Certain fundamental constructs in BIEM's are also essential ingredients in boundary element methods, often used by scientists and engineers. However, BIEM's are also sometimes more difficult to use in plane cases than in their three-dimensional counterparts. Consequently, the full, detailed BIEM treatment of two-dimensional problems has been largely neglected in the literature-even when it is more than marginally different from that applied to the corresponding three-dimensional versions. This volume discusses three typical cases where such differences are clear: the Laplace equation (one unknown function), plane strain (two unknown functions), and the bending of plates with transverse shear deformation (three unknown functions). The author considers each of these with Dirichlet, Neumann, and Robin boundary conditions. He subjects each to a thorough investigation-with respect to the existence and uniqueness of regular solutions-through several BIEM's. He proposes suitable generalizations of the concept of logarithmic capacity for plane strain and bending of plates, then uses these to identify contours where non-uniqueness may occur. In the final section, the author compares and contrasts the various solution representations, links them by means of boundary operators, and evaluates them for their suitability for numeric computation.