Brain-Machine Interfaces for Assistance and Rehabilitation of People with Reduced Mobility


Book Description

This book reports on the development of different control tools for Brain-machine interface-based assistance and rehabilitation. Brain activity is analyzed with the purpose of classify mental tasks and detecting movement intentions in patients with impaired motility. Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS) are detected. Throughout this book, different control systems are presented and validated. This thesis, examined at the Miguel Hernández University of Elche, Spain, in 2016, received the award for best thesis in bioengineering from the Bioengineering group of the Spanish Committee of Automatic Control (CEA) in 2017.




Smart Wheelchairs and Brain-computer Interfaces


Book Description

Smart Wheelchairs and Brain-Computer Interfaces: Mobile Assistive Technologies combines the fields of neuroscience, rehabilitation and robotics via contributions from experts in their field to help readers develop new mobile assistive technologies. It provides information on robotics, control algorithm design for mobile robotics systems, ultrasonic and laser sensors for measurement and trajectory planning, and is ideal for researchers in BCI. A full view of this new field is presented, giving readers the current research in the field of smart wheelchairs, potential control mechanisms and human interfaces that covers mobility, particularly powered mobility, smart wheelchairs, particularly sensors, control mechanisms, and human interfaces. - Presents the first book that combines BCI and mobile robotics - Focuses on fundamentals and developments in assistive robotic devices which are commanded by alternative ways, such as the brain - Provides an overview of the technologies that are already available to support research and the development of new products




Neuro-Robotics


Book Description

Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for performance augmentation, which can seen as augmentation of abilities of healthy subjects or assistance in case of the mobility impaired. The third part of the book focuses on the inverse problem, i.e. how we can use robotic devices that physically interact with the human body, in order (a) to understand human motor control and (b) to provide therapy to neurologically impaired people or people with disabilities.




Assistance Robotics and Biosensors 2019


Book Description

This Special Issue covers several recent advances in robotic devices applied to motor rehabilitation and assistance. The Special Issue has collected eight outstanding papers covering different aspects of assistance robotics and biosensors. The selected contributions cover several main topics related to assistance robotics, from the control of myoelectric prostheses to the rehabilitation and assistance of the lower and upper limbs.




Robotics in Healthcare


Book Description

The work is a collection of contributions resulting from R&D efforts originated from scientific projects involving academia, technological partners, and end-user institutions. The aim is to provide a comprehensive overview of robotics technology applied to Healthcare, and discuss the anticipation of upcoming challenges. The intersection of Robotics and Medicine includes socially and economically relevant areas, such as rehabilitation, therapy, and healthcare. Innovative usages of current robotics technologies are being somewhat stranded by concerns related to social dynamics. The examples covered in this volume show some of the potential societal benefits robotics can bring and how the robots are being integrated in social environments. Despite the aforementioned concerns, a fantastic range of possibilities is being opened. The current trend in social robotics adds to technology challenges and requires R&D to think about Robotics as an horizontal discipline, intersecting social and exact sciences. For example, robots that can act as if they have credible personalities (not necessarily similar to humans) living in social scenarios, eventually helping people. Also, robots can move inside the human body to retrieve information that otherwise is difficult to obtain. The decision autonomy of these robots raises a broad range of subjects though the immediate advantages of its use are evident. The book presents examples of robotics technologies tested in healthcare environments or realistically close to being deployed in the field and discusses the challenges involved. Chapter 1 provides a comprehensive overview of Healthcare robotics and points to realistically expectable developments in the near future. Chapter 2 describes the challenges deploying a social robot in the Pediatrics ward of an Oncological hospital for simple edutainment activities. Chapter 3 focuses on Human-Robot Interaction techniques and their role in social robotics. Chapter 4 focus on R&D efforts behind an endoscopic capsule robot. Chapter 5 addresses experiments in rehabilitation with orthotics and walker robots. These examples have deep social and economic relations with the Healthcare field, and, at the same time, are representative of the R&D efforts the robotics community is developing.







Clinical Systems Neuroscience


Book Description

The impaired brain has often been difficult to rehabilitate owing to limited knowledge of the brain system. Recently, advanced imaging techniques such as fMRI and MEG have allowed researchers to investigate spatiotemporal dynamics in the living human brain. Consequently, knowledge in systems neuroscience is now rapidly growing. Advanced techniques have found practical application by providing new prosthetics, such as brain–machine interfaces, expanding the range of activities of persons with disabilities, or the elderly. The book’s chapters are authored by researchers from various research fields such as systems neuroscience, rehabilitation, neurology, psychology and engineering. The book explores the latest advancements in neurorehabilitation, plasticity and brain–machine interfaces among others and constitutes a solid foundation for researchers who aim to contribute to the science of brain function disabilities and ultimately to the well-being of patients and the elderly worldwide.




Brain-Computer Interfaces


Book Description

A recognizable surge in the field of Brain Computer Interface (BCI) research and development has emerged in the past two decades. This book is intended to provide an introduction to and summary of essentially all major aspects of BCI research and development. Its goal is to be a comprehensive, balanced, and coordinated presentation of the field's key principles, current practice, and future prospects.