Brine Migration in Salt and Its Implications in the Geologic Disposal of Nuclear Waste


Book Description

This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.







Geochemical Aspects of Radioactive Waste Disposal


Book Description

There is an extremely voluminous literature on radioactive waste and its disposal, much in the form of government-sponsored research reports. To wade through this mountain of literature is indeed a tedious task, and it is safe to speculate that very few, if any, individuals have the time to examine each report that has been issued during the preceding ten years. This book attempts to summarize much of this literature. Further, many workers in the geosciences have not received training in the nuclear sciences, and many nuclear scientists could be better versed in geology. In this book an attempt is made to cover some background material on radioactive wastes and geotoxicity that may not be an integral part of a geologist's training, and background material on geology and geochemistry for the nuclear scientist. The geochemical material is designed for both the geoscientist and the nuclear scientist. There is no specific level for this book. Certainly, it should be useful to advanced undergraduates and graduates studying geology and nuclear science. It does not pretend to cover a tremendous amount of detail in all subjects, yet the references cited provide the necessary source materials for follow-up study. It is my intention that the reader of this book will have a better, broader understanding of the geochemical aspects of radioactive waste disposal than is otherwise available in anyone source.




Fluid Inclusions in Salt


Book Description













Thermal-gradient Migration of Brine Inclusions in Salt


Book Description

It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process.