Cake-Cutting Algorithms


Book Description

The challenge of dividing an asset fairly, from cakes to more important properties, is of great practical importance in many situations. Since the famous Polish school of mathematicians (Steinhaus, Banach, and Knaster) introduced and described algorithms for the fair division problem in the 1940s, the concept has been widely popularized. This book




Fair Division


Book Description

Cutting a cake, dividing up the property in an estate, determining the borders in an international dispute - such problems of fair division are ubiquitous. Fair Division treats all these problems and many more through a rigorous analysis of a variety of procedures for allocating goods (or 'bads' like chores), or deciding who wins on what issues, when there are disputes. Starting with an analysis of the well-known cake-cutting procedure, 'I cut, you choose', the authors show how it has been adapted in a number of fields and then analyze fair-division procedures applicable to situations in which there are more than two parties, or there is more than one good to be divided. In particular they focus on procedures which provide 'envy-free' allocations, in which everybody thinks he or she has received the largest portion and hence does not envy anybody else. They also discuss the fairness of different auction and election procedures.




Handbook of Computational Social Choice


Book Description

The rapidly growing field of computational social choice, at the intersection of computer science and economics, deals with the computational aspects of collective decision making. This handbook, written by thirty-six prominent members of the computational social choice community, covers the field comprehensively. Chapters devoted to each of the field's major themes offer detailed introductions. Topics include voting theory (such as the computational complexity of winner determination and manipulation in elections), fair allocation (such as algorithms for dividing divisible and indivisible goods), coalition formation (such as matching and hedonic games), and many more. Graduate students, researchers, and professionals in computer science, economics, mathematics, political science, and philosophy will benefit from this accessible and self-contained book.




Economics and Computation


Book Description

This textbook connects three vibrant areas at the interface between economics and computer science: algorithmic game theory, computational social choice, and fair division. It thus offers an interdisciplinary treatment of collective decision making from an economic and computational perspective. Part I introduces to algorithmic game theory, focusing on both noncooperative and cooperative game theory. Part II introduces to computational social choice, focusing on both preference aggregation (voting) and judgment aggregation. Part III introduces to fair division, focusing on the division of both a single divisible resource ("cake-cutting") and multiple indivisible and unshareable resources ("multiagent resource allocation"). In all these parts, much weight is given to the algorithmic and complexity-theoretic aspects of problems arising in these areas, and the interconnections between the three parts are of central interest.




Once Upon a Chef: Weeknight/Weekend


Book Description

NEW YORK TIMES BESTSELLER • 70 quick-fix weeknight dinners and 30 luscious weekend recipes that make every day taste extra special, no matter how much ​time you have to spend in the kitchen—from the beloved bestselling author of Once Upon a Chef. “Jennifer’s recipes are healthy, approachable, and creative. I literally want to make everything from this cookbook!”—Gina Homolka, author of The Skinnytaste Cookbook Jennifer Segal, author of the blog and bestselling cookbook Once Upon a Chef, is known for her foolproof, updated spins on everyday classics. Meticulously tested and crafted with an eye toward both flavor and practicality, Jenn’s recipes hone in on exactly what you feel like making. Here she devotes whole chapters to fan favorites, from Marvelous Meatballs to Chicken Winners, and Breakfast for Dinner to Family Feasts. Whether you decide on sticky-sweet Barbecued Soy and Ginger Chicken Thighs; an enlightened and healthy-ish take on Turkey, Spinach & Cheese Meatballs; Chorizo-Style Burgers; or Brownie Pudding that comes together in under thirty minutes, Jenn has you covered.




Internet and Network Economics


Book Description

This book constitutes the refereed proceedings of the 6th International Workshop on Internet and Network Economics, WINE 2010, held in Stanford, USA, in December 2010. The 52 revised full papers presented were carefully reviewed and selected from 95 submissions. The papers are organized in 33 regular papers and 19 short papers.




How to Think About Algorithms


Book Description

This textbook, for second- or third-year students of computer science, presents insights, notations, and analogies to help them describe and think about algorithms like an expert, without grinding through lots of formal proof. Solutions to many problems are provided to let students check their progress, while class-tested PowerPoint slides are on the web for anyone running the course. By looking at both the big picture and easy step-by-step methods for developing algorithms, the author guides students around the common pitfalls. He stresses paradigms such as loop invariants and recursion to unify a huge range of algorithms into a few meta-algorithms. The book fosters a deeper understanding of how and why each algorithm works. These insights are presented in a careful and clear way, helping students to think abstractly and preparing them for creating their own innovative ways to solve problems.




Mathematical Snapshots


Book Description

Numerous photographs and diagrams explain mathematical phenomena in series of thought-provoking expositions. From simple puzzles to more advanced problems, topics include psychology of lottery players, new and larger prime numbers, and more. 391 illustrations.




An Introduction to Linear Programming and Game Theory


Book Description

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.




Mathematics and Democracy


Book Description

Voters today often desert a preferred candidate for a more viable second choice to avoid wasting their vote. Likewise, parties to a dispute often find themselves unable to agree on a fair division of contested goods. In Mathematics and Democracy, Steven Brams, a leading authority in the use of mathematics to design decision-making processes, shows how social-choice and game theory could make political and social institutions more democratic. Using mathematical analysis, he develops rigorous new procedures that enable voters to better express themselves and that allow disputants to divide goods more fairly. One of the procedures that Brams proposes is "approval voting," which allows voters to vote for as many candidates as they like or consider acceptable. There is no ranking, and the candidate with the most votes wins. The voter no longer has to consider whether a vote for a preferred but less popular candidate might be wasted. In the same vein, Brams puts forward new, more equitable procedures for resolving disputes over divisible and indivisible goods.