Calculation of the Boundary-layer Flow in the Windward Symmetry Plane of a Spherically Blunted Axisymmetric Body at Angle of Attack, Including Streamline-swallowing Effects


Book Description

Three-dimensional compressible boundary-layer equations are particularized to the windward symmetry plane of a spherically blunted axisymmetric body at incidence under hypersonic conditions. Through the use eddy transport and streamwise intermittency both transitional and fully turbulent boundary layers may be treated. A scheme is presented for determining the outer-edge boundary conditions based on a mass flow balance treatment of the boundary-layer entrainment of the inviscid flow. A finite-difference technique is described for solving the set of partial differential equation governing the boundary-layer flow, and for treating the streamline-swallowing phenomenon.













Roll-damping Derivative Calculations for Spinning Sharp and Blunt Cones in Supersonic and Hypersonic Flow


Book Description

The boundary-layer equations in a Crocco variables form have been numerically solved for flow over spinning sharp and blunt cones at zero incidence to supersonic and hypersonic streams. Both laminar and turbulent flows have been treated, and for the blunt cases swallowing of the inviscid entropy layer by the boundary layer has been considered. The item of primary interest is roll damping, and results of a parametric study involving Mach number, Reynolds number, cone angle, and bluntness ratio are presented. Limited comparisons with experimental data and another method of computation are also presented. (Author).







Aeronautical Engineering


Book Description

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA)