Case Studies in Atomic Physics 4


Book Description

Case Studies in Atomic Physics IV presents a collection of six case studies in atomic physics. The first study deals with the correspondence identities associated with the Coulomb potential: the Rutherford scattering identity, the Bohr-Sommerfeld identity, and the Fock identity. The second paper reviews advances in recombination. This is followed by a three-part study on relativistic self-consistent field (SCF) calculations. The first part considers relativistic SCF calculations in general, and in particular discusses different configurational averaging techniques and various statistical exchange approximations. The second part reviews the relativistic theory of hyperfine structure. The third part makes a number of comparisons between experimental results and values obtained in different SCF schemes, with exact as well as approximate exchange. The next case study on pseudopotentials compares the results of model potential and pseudopotential calculations. The final study reviews, on a kinetic basis, the behavior of low density ion swarms in a neutral gas.




Case Studies in Atomic Physics


Book Description

Case Studies in Atomic Physics III focuses on case studies on atomic and molecular physics, including atomic collisions, transport properties of electrons, ions, molecules, and photons, interaction potentials, spectroscopy, and surface phenomena. The selection first discusses detailed balancing in the time-dependent impact parameter method, as well as time-reversal in the impact parameter method and coupled state approximation. The text also examines the mechanisms of electron production in ion. Topics include measurement of doubly differential cross sections and electron spectra, direct Coulomb ionization, autoionization and Auger effect, charge transfer to continuum states, and electron promotion. The book takes a look at the production of inner-shell vacancies in heavy ion-atom collisions and hyperfine and Zeeman studies of metastable atomic states by atomic-beam magnetic-resonance. Topics include molecular orbital model, experimental considerations, and theoretical considerations and interpretation of experimental results. The manuscript also evaluates the coupled integral-equation approach to nonrelativistic three-body systems with applications to atomic problems, including kinematic theory of three-body system, reduction of the coupled equations, and application to atomic problems. The selection is a dependable reference for readers interested in atomic and molecular physics.




Atomic Physics 4


Book Description

ATOMIC PHYSICS 4 extends the series of books containing the invited papers presented at each "International Conference on Atomic Physics." FICAP, the fourth conference of this type since its foun dation in 1968, was held at the University of Heidelberg. The goal of these conferences, to cover the field of atomic physics with all its different branches, to review the present status of research, to revive the fundamental basis of atomic physics and to emphasize future developments of this field as well as its applications was met by more than thirty invited speakers, leaders in the field of atomic physics. Their talks were supplemented by more than two hundred contributed papers contained in the FICAP Book of Abstracts. This volume begins with papers given in honour and memory of E. U. Condon, to whom this conference was dedicated. It continues with articles on fundamental interactions in atoms and Quantum electrodynamics, on the fast progressing field of high energy heavy ion collisions and Quasi-molecules, on electronic and atomic collisions and the structure of electronic and ~-mesic atoms. The volume closes with contributions concerning the application of la sers in atomic physics, a new field of vastly increasing importance to fundamental experiments as well as applications. We feel that this book contains a very stimulating account of the present main streams of research in atomic physics and its possible future di rections.




Case Studies in Atomic Physics


Book Description

Case studies in atomic physics 4...







Advances In Atomic Physics: An Overview


Book Description

“French Nobel Laureate Claude Cohen-Tannoudji is second to none in his understanding of the modern theory and application of atom-photon interactions. He is also known for his lucid and accessible writing style … Advances in Atomic Physics is an impressive and wonderful-to-read reference text … Certainly researchers in the fields of atom-photon interactions and atom traps will want it as a reference on their bookshelves … A selection of chapters may be of benefit to students: the early chapters for those entering the field, the later chapters for those already doing atom-laser PhD thesis work.”Physics TodayThis book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.




Relativistic Quantum Theory of Atoms and Molecules


Book Description

This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.







Many-Body Methods in Quantum Chemistry


Book Description

The present volume contains the text of the invited lectures presented at the Symposium on Many Body Methods in Quantum Chemistry, held on the campus of Tel Aviv University in August 1988. The Symposium was a satellite meeting of the Sixth International Congress on Quantum Chemistry held in Jerusalem. The development and application of many-body methods in Quantum chemistry have been on the rise for a number of years. This is therefore a good time for an interim report on the state of the field. It is hoped that such a report is hereby provided, though it may not be complete. The Symposium was held under the auspices of Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry. Other sponsors were the Israeli Academy of Sciences and Humanities, and the Israeli Ministry of Science and Development. Many thanks go to all of them. Finally, I would like to thank all the speakers and participants for making the meeting the enjoyable and (I hope) profitable experience it was. Tel Aviv, Israel Uzi Kaldor TESTS AND APPLICATIONS OF COMPLETE MODEL SPACE QUASIDEGENERATE MANY-BODY PERTURBATION THEORY FOR MOLECULES Karl F. Freed The James Franck Institute and Department of Chemistry The University of Chicago, Chicago, DUnois 60637 U.S.A.